• Title/Summary/Keyword: Power electronic converter

Search Result 776, Processing Time 0.034 seconds

Comparative Analysis and Implementation of Single-Phase and Three-Level Boost Converter Applied to PV System (태양광 발전 시스템에 적용되는 단상 및 3-레벨 부스트컨버터의 특성 비교 분석 및 구현)

  • Kim, Cheol-Min;Kim, Hyo-Sung;Kim, Jong-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.287-288
    • /
    • 2019
  • 본 논문에서는 태양광 발전 시스템에 적용되는 단상 및 3-레벨 부스트 컨버터의 특성을 비교 분석 및 구현한다. 기존의 전통적인 단상 부스트 컨버터와 3-레벨 부스트 컨버터를 전력밀도와 효율 측면에서 비교 분석하고 이를 Simulation 및 20kW급 프로토 타입 구현을 통해 검증한다. 실험을 통해 3-레벨 부스트 컨버터가 단상 부스트 컨버터에 비해 0.5% 높은 효율과 17% 높은 전력밀도를 가지는 것을 확인하였다.

  • PDF

Measurement of Supercapacitor Charging Characteristic for RF Wireless Charging (RF무선충전을 위한 슈퍼커패시터 충전특성 측정)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.136-139
    • /
    • 2021
  • In this paper, we studied the charging characteristics of high-capacity supercapacitor with high current for RF wireless charging system for smart phone charging. The dc output of the RF-DC receiver is connected to supercapacitor after which is connected to DC-DC converter for charging a smart phone. This configuration stably supplies voltage and current for charging it. Studies show that the higher charging current use, the rapidly shorter the charging time of supercapacitor is. The currents of 2A, 10A and 27A were used for charging supercapacitors. The charging time was measured for 3000F, 6000F, 12000F supercapacitors which is parallelly connected with 3000F supercapacitors.

A NEW High Efficiency Soft-Switching Three-Phase PWM Rectifier (새로운 고효율 소프트 스위칭 3상 PWM 정류기)

  • Mun Sang-Pil;Suh Ki-Young;Lee Hyun-Woo;Kwon Soon-Kurl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.49-58
    • /
    • 2005
  • A new soft switching three-phase PWM rectifier with simple circuit configuration and high efficiency has been developed. The proposed circuit is a kind of the auxiliary resonant commutated Pole(ARCP)converter The conventional ARCP converter requires three-auxiliary reactors and six-auxiliary switches for the soft switching auxiliary circuit and for these switching elements, a gate drive circuit and a control circuit are required, resulting in high part as a disadvantage. In the main circuit proposed in this paper, the auxiliary soft switching circuit is composed of two-auxiliary reactors, two-auxiliary switches and several diodes. In addition, common use of the PWM control circuit for two-switches will make the control circuit of the auxiliary switches simple. By means of function of the soft switching auxiliary circuit, the main switching element performs zero voltage switching operation and the auxiliary switches perform the zero current switching. In this paper, the circuit configuration and the operational analysis of the proposed circuit are described at first and then, experimental results will be reported. By using a prototype with 5[kW] capacity, the conversion efficiency of maximum $98.8[\%]$ and the power factor of $99[\%]$ or higher were obtained.

Active-RC Channel Selection Filter with 40MHz Bandwidth and Improved Linearity (개선된 선형성을 가지는 R-2R 기반 5-MS/s 10-비트 디지털-아날로그 변환기)

  • Jeong, Dong-Gil;Park, Sang-Min;Hwang, Yu-Jeong;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.149-155
    • /
    • 2015
  • This paper proposes 5-MS/s 10-bit digital-to-analog converter(DAC) with the improved linearity. The proposed DAC consists of a 10-bit R-2R-based DAC, an output buffer using a differential voltage amplifier with rail-to-rail input range, and a band-gap reference circuit for the bias voltage. The linearity of the 10-bit R-2R DAC is improved as the resistor of 2R is implemented by including the turn-on resistance of an inverter for a switch. The output voltage range of the DAC is determined to be $2/3{\times}VDD$ from an rail-to-rail output voltage range of the R-2R DAC using a differential voltage amplifier in the output buffer. The proposed DAC is implemented using a 1-poly 8-metal 130nm CMOS process with 1.2-V supply. The measured dynamic performance of the implemented DAC are the ENOB of 9.4 bit, SNDR of 58 dB, and SFDR of 63 dBc. The measured DNL and INL are less than +/-0.35 LSB. The area and power consumption of DAC are $642.9{\times}366.6{\mu}m^2$ and 2.95 mW, respectively.

Research on the Re-Use of Electric Vehicle Battery for Energy Storage Systems (전기자동차 배터리의 에너지 저장장치로의 재사용에 관한 연구)

  • Vuand, Hai-Nam;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.345-346
    • /
    • 2016
  • The grid-connected energy storage systems, which could increase the reliability, efficiency, and cleanliness of the grid is presently restricted by the high cost of batteries. This problems could be solved by batteries retired from automotive services. These batteries can provide a low-cost system for energy storage and other applications such as residential applications and renewable energy integration. This paper gives an overview of technical requirements for the re-use of the electric vehicle batteries in energy storage systems.Firstly, the motivation of research is introduced. Secondly, the technologies needed for the re-use of the battery are introduced such asidentification of the battery characteristics, grading of the aged batteries, identification of the state-of-charge and state-of-health of the battery and suitable power electronic converter topologies. In addition the control strategy to maximize the battery lifespan and bypass the faulty batteries is presented and one-stop solution to implement the above mentioned technologies are also given.

  • PDF

The Study of the Circulation Current Control Scheme on Single Phase Inverter System (단상 인버터 시스템에서 순환 전류 제어 기법에 관한 연구)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.60-69
    • /
    • 2014
  • This paper proposed the circulation current control scheme in the single phase inverter system. The load experiment of the power conversion system including the UPS usually uses the passive components such as resistors and inductors. Therefore, the energy consumption is serious problem. In addition, the system is out of order when it is installed in the local area, and the load experiment can not perform adequately after troubleshooting, because there is no the load equipment, and the power capacity is not enough in the local area. The paper does the research on the circulation current control scheme, it does not need the load equipment, and the load current can reuse as the input current of the equipment. Instead of the conventional method the voltage-voltage and voltage-current control scheme introduced the parallel converter concept is newly proposed, and the validity of the proposed control scheme is investigated by both simulation and experimental results.

On the Calculation of Energy Requirement for Freight Train Reefer Container and Methods of Supplying the Power

  • Kim, Joouk;Hwang, Sunwoo;Lee, Jae-Bum;Kim, Youngmin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.79-88
    • /
    • 2022
  • Recently, securing stable supply of fresh food is deemed as one of the important tasks. Accordingly, now the presence of cold chain along with the needs of a comfortable and healthy life is growing as the online market expands and the contactless industry grows, however, cold chain is being studied only in the aspect of ground and sea transportation. And, due to global warming and strengthening global environmental regulations, we believe that it is necessary to convert the existing road-centered logistics system into a railway-centered logistics system, a low-carbon transportation means. Therefore, in this paper we calculated the maximum energy required by the reefer container as a basic research necessary for constructing the low temperature distribution and cold chain based on the reefer container railway, and conducted a study on methods of supplying the reefer container power utilizing 1. tramline, 2. battery, 3. generator. The results of this paper can be utilized as a foundational study for building a cold chain based on a reefer container dedicated to freight trains in the future.

A 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS ADC for Digital Multimedia Broadcasting applications (DMB 응용을 위한 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D 변환기)

  • Cho, Young-Jae;Kim, Yong-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.37-47
    • /
    • 2006
  • This work proposes a 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D Converter (ADC) for high-performance wireless communication systems such as DVB, DAB and DMB simultaneously requiring low voltage, low power, and small area. A two-stage pipeline architecture minimizes the overall chip area and power dissipation of the proposed ADC at the target resolution and sampling rate while switched-bias power reduction techniques reduce the power consumption of analog amplifiers. A low-power sample-and-hold amplifier maintains 10b resolution for input frequencies up to 60MHz based on a single-stage amplifier and nominal CMOS sampling switches using low threshold-voltage transistors. A signal insensitive 3-D fully symmetric layout reduces the capacitor and device mismatch of a multiplying D/A converter while low-noise reference currents and voltages are implemented on chip with optional off-chip voltage references. The employed down-sampling clock signal selects the sampling rate of 25MS/s or 10MS/s with a reduced power depending on applications. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates the measured DNL and INL within 0.42LSB and 0.91LSB and shows a maximum SNDR and SFDR of 56dB and 65dB at all sampling frequencies up to 2SMS/s, respectively. The ADC with an active die area if $0.8mm^2$ consumes 4.8mW at 25MS/s and 2.4mW at 10MS/s at a 1.2V supply.

Multi-Channel Data Acquisition System Design for Spiral CT Application

  • Yoo, Sun-Won;Kim, In-Su;Kim, Bong-Su;Yun Yi;Kwak, Sung-Woo;Cho, Kyu-Sung;Park, Jung-Byung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.468-470
    • /
    • 2002
  • We have designed X-ray detection system and multi-channel data acquisition system for Spiral CT application. X-ray detection system consists of scintillator and photodiode. Scintillator converts X-ray into visible light. Photodiode converts visible light into electrical signal. The multi-channel data acquisition system consists of analog, digital, master and backplane board. Analog board detects electrical signal and amplifies signal by 140dB. Digital board consists of MUX(Multiplex) which routes multi-channel analog signal to preamplifier, and ADC(Analog to Digital Converter) which converts analog signal into digital signal. Master board supplies the synchronized clock and transmits the digital data to image reconstructor. Backplane provides electrical power, analog output and clock signal. The system converts the projected X-ray signal over the detector array with large gain, samples the data in each channel sequentially, and the sampled data are transmitted to host computer in a given time frame. To meet the timing limitation, this system is very flexible since it is implemented by FPGA(Field Programmable Gate Array). This system must have a high-speed operation with low noise and high SNR(signal to noise ratio), wide dynamic range to get a high resolution image.

  • PDF

Electrical modelling for thermal behavior and gas response of combustible catalytic sensor (접촉연소식 센서의 열 특성 및 가스반응의 모델링)

  • Lee, Sang-Mun;Song, Kap-Duk;Joo, Byung-Su;Lee, Yun-Su;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • This study provides the electrical model of combustible catalytic gas sensor. Physical characteristics such as thermal behavior, resistance change were included in this model. The finite element method analysis for sensor device structure showed that the thermal behavior of sensor is expressed in a simple electrical equivalent circuit that consists of a resistor, a capacitor and a current source. This thermal equivalent circuit interfaces with real electrical circuit using two parts. One is 'power to heat' converter. The other is temperature dependent variable resistor. These parts realized with the analog behavior devices of the SPICE library. The gas response tendency was represented from the mass transferring limitation theory and the combustion theory. In this model, Gas concentration that is expressed in voltage at the model, is converted to heat and is flowed to the thermal equivalent circuit. This model is tested in several circuit simulations. The resistance change of device, the delay time due to thermal capacity, the gas responses output voltage that are calculated from SPICE simulations correspond well to real results from measuring in electrical circuits. Also good simulation result can be produced in the more complicated circuit that includes amplifier, bios circiut, buffer part.