As the big data analysis technologies has been developed worldwide, the importance of asset management for electric power facilities based data analysis is increasing. It is essential to secure quality of data that will determine the performance of the RISK evaluation algorithm for asset management. To improve reliability of asset management, asset data must be preprocessed. In particular, the process of cleaning dirty data is required, and it is also urgent to develop an algorithm to reduce time and improve accuracy for data treatment. In this paper, the result of the development of an automatic cleaning algorithm specialized in overhead transmission asset data is presented. A data cleaning algorithm was developed to enable data clean by analyzing quality and overall pattern of raw data.
In this study, the characteristic lifetime of power facilities such as power transformers and GIS were investigated as the basis of power facility asset management. It is difficult to obtain the operation and failure data of the facilities in Korea. Therefore, the number of failures of the electric power facilities was calculated from the operation data and hazard rate shown in the overseas literatures, and the statistical analysis was performed using the Weibull distribution function. As a result of extracting and analyzing the data of the UK National Grid for power transformers, the characteristic lifetime (scale parameter) of 116.45 years was considered to be a very appropriate value for power transformer management and can be used as a comparative data of the analysis of the domestic transformers. As for the GIS, based on the Bays and Bay-Years data and the hazard rate according to the operation years of the 123kV GIS in Germany, it is found out that the characteristic lifetime of GIS is not so meaningful. It is necessary to decide a maintenance strategy and lifetime expectancy considering the characteristics of the design, materials and manufacturing process of GIS.
This year korea power system had recorded highest peak load for 6 times and finally it made new peak load 51,264MW at July 29th 3:00 PM. The new peak load is increased 8.2% from the last year peak load 47,385MW and korea power system entered 50,000MW load era. The Korea Power Exchange (KPX) snapped power system data at the peak load time using state estimation function in the EMS. And authors converted the power system data at peak load to PSS/E power flow format. Using this PSS/E peak load power flow data, this paper explains demand analysis result shun capacitor operation, voltage distribution at the peak load. And the paper shows the simulation result of 2 contingency analysis using the snapped PSS/E peak load data.
Public acceptance of nuclear power is important for the government, the major stakeholder of the industry, because consensus is required to drive actions. It is therefore no coincidence that the governments of nations operating nuclear reactors are endeavoring to enhance public acceptance of nuclear power, as better acceptance allows stable power generation and peaceful processing of nuclear wastes produced from nuclear reactors. Past research, however, has been limited to epistemological measurements using methods such as the Likert scale. In this research, we propose big data analysis as an attractive alternative and attempt to identify the attitudes of the public on nuclear power. Specifically, we used common big data analyses to analyze consumer opinions via SNS (Social Networking Services), using keyword analysis and opinion analysis. The keyword analysis identified the attitudes of the public toward nuclear power. The public felt positive toward nuclear power when Korea successfully exported nuclear reactors to the United Arab Emirates. With the Fukushima accident in 2011 and certain supplier scandals in 2012, however, the image of nuclear power was degraded and the negative image continues. It is recommended that the government focus on developing useful businesses and use cases of nuclear power in order to improve public acceptance.
A real-time monitoring system was developed for transfer, receive, backup and analysis of wind power data at three wind farm(Hang won, Hankyung and Sung san) in Jeju. For this monitoring system a communication system analysis, a collection of data and transmission module development, data base construction and data analysis and management module was developed, respectively. These modules deal with mechanical, electrical and environmental problem. Especially, time series graphic is supported by the data analysis and management module automatically. The time series graphic make easier to raw data analysis. Also, the real-time monitoring system is connected with wind power forecasting system through internet web for data transfer to wind power forecasting system's data base.
In this paper describe for development of conversion program by EMS data acquisition. Currently EMS output data has a arbitrary bus number and incorrect bus name. It is need to delvelop converting program for using this data to analysis real power system. Conversion consist of bus number and bus name convert, machine's MBASE, X''d, Machine ID, Area, Zone Code, adding tie-line and remove small genererator that was not consider in transient stability analysis. As result of this work, the efficiency of power system analysis is increase and the result input data is used for many analysis applications.
The complex documentation involved in power system analysis software require a well-defined and friendly database system. We have developed an object-oriented database management system for power system analysis, and have described load flow analysis and transient stability analysis using object-oriented database(OODB). Database management systems are widely used and achieve high reliability of data management in the engineering fields. However relational database system have shortcomings in application to power system analysis. ill relational database, the data model is too simple for modeling complex data and database languages are very different from programming languages. Object-oriented techniques are sufficiently powerful to support data-modeling requirements of GUI applications. The GUI is implemented using C++ on a MS windows platform. The OODB supports data modeling requirements of GUI applications and the performance is well acceptable for Gill applications.
A fast and inexpensive approximate analysis method to predict power output characteristics of the Stilting engines in a preliminary design stage was investigated. In basic equations proposed by Walker, typical temperatures of working fluids in expansion and compression spaces were treated as those of working fluids in heater and cooler respectively. While the temperature of working fluid in the expansion space was actually lower than that of working fluid in the heater, the temperature of working fluid in the compression space was higher than that of working fluids in the cooler. In this paper, the working fluid temperature of expansion space was treated as lower than the heater temperature and that of compression space was treated as higher than the cooler temperature. Also, according to them, the power output characteristics of the Stirling engine were evaluated with respect to the GPU-3 and 4-215 Stilting engines. The following conclusions were drawn from the analysis. 1. Using the available experimental data from the GPU-3 Stirling engine, it was shown that the approximate analysis predicts the brake power with a maximum error of 19 percent at 1, 000rpm and with a minimum error of 3 percent at 2, 000rpm. 2. The approximate analysis data which for the GPU-3 Stirling engine were much closer to the experimental data than those of adiabatic 2nd order and 3rd order analysis within 1, 500rpm to 2, 500rpm. 3. The approximate analysis data which for the GPU-3 and 4-215 Stilting engines were much closer to the experimental data than those of the Beal number analysis.
There have been ongoing researches to identify and analyze the patterns of electric power IoT data inside sensor nodes to supplement the stable supply of power and the efficiency of energy consumption. This study set out to propose an analysis process for electric power IoT data with the K-means algorithm, which is an unsupervised learning technique rather than a supervised one. There are a couple of problems with the old K-means algorithm, and one of them is the selection of cluster number K in a heuristic or random method. That approach is proper for the age of standardized data. The investigator proposed an analysis process of selecting an automated cluster number K through principal component analysis and the space division of normal distribution and incorporated it into electric power IoT data. The performance evaluation results show that it recorded a higher level of performance than the old algorithm in the cluster classification and analysis of pitches and rolls included in the communication bodies of utility poles.
For an off-site consequence analysis at nuclear power plant, MELCOR Accident Consequence Code System(MACCS) II code is widely used as a software tool. In this study, the algorithm of web-based off-site consequence analysis program(OSCAP) using the MACCS II code was developed for an Integrated Leak Rate Test (ILRT) interval extension and Level 3 probabilistic safety assessment(PSA), and verification and validation(V&V) of the program was performed. The main input data for the MACCS II code are meteorological, population distribution and source term information. However, it requires lots of time and efforts to generate the main input data for an off-site consequence analysis using the MACCS II code. For example, the meteorological data are collected from each nuclear power site in real time, but the formats of the raw data collected are different from each site. To reduce the efforts and time for risk assessments, the web-based OSCAP has an automatic processing module which converts the format of the raw data collected from each site to the input data format of the MACCS II code. The program also provides an automatic function of converting the latest population data from Statistics Korea, the National Statistical Office, to the population distribution input data format of the MACCS II code. For the source term data, the program includes the release fraction of each source term category resulting from modular accident analysis program(MAAP) code analysis and the core inventory data from ORIGEN. These analysis results of each plant in Korea are stored in a database module of the web-based OSCAP, so the user can select the defaulted source term data of each plant without handling source term input data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.