• Title/Summary/Keyword: Power conversion efficiency

Search Result 1,156, Processing Time 0.032 seconds

Future Prospect of Perovskite Solar Cells for Practical Applications (페로브스카이트 태양전지 안정성 개선을 위한 광활성층 연구 현황과 전망)

  • Song, Jae-Kwan;Kim, Do-Heyoung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.1-20
    • /
    • 2020
  • Development of efficient methods for clean energy production became a critical issue to improve the quality of human lives. Solar cells is considered as one of the alternative solutions to resolve the issue. Although Si-based solar cells are only popularly utilized for practical applications, high manufacturing cost is considered as a serious drawback for further versatile applications. Thus, different types of are being investigated aiming to replace the Si-based solar cells. Recently, perovskite solar cells (PSC) are considered as a potential replacement for Si-based solar cells due to their low production cost, high power conversion efficiency, light weight and possibility of flexible device fabrication. Thus, we have reviewed the challenges of PSC faced with practical application, particularly on stability.

Effect of rolling parameters on soft-magnetic properties during hot rolling of Fe-based soft magnetic alloy powders (Fe계 연자성 합금 분말의 고온 압연시 자성특성에 미치는 압연인자들의 영향)

  • Kim, H.J.;H.Lee, J.;Lee, S.H.;Park, E.S.;Huh, M.Y.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.266-269
    • /
    • 2009
  • Iron-based soft magnetic materials are widely used as cores, such as transformer transformers, motors, and generators. Reducing losses generated from soft magnetic materials of these applications results in improving energy conversion efficiency. Recently, the new P/M soft magnetic material realized an energy loss of 68 W/kg with a drive magnetic flux of 1 T, at a frequency of 1 kHz, rivaling general-purpose electromagnetic steel sheet in the low frequency range of 200 Hz to 1 kHz. In this research, the effect of rolling parameters on soft magnetic properties of Fe-based powder cores was investigated. The Fe-based soft magnetic plates were produced by the hot powder rolling process after both pure Fe and Fe-4%Si powders were canned, evacuated, and sealed in Cu can. The soft magnetic properties such as energy loss and coercive power were measured by B-H curve analyzer. The soft magnetic properties of rolled sheets were measured under conditions of a magnetic flux density of 1 T at a frequency of 200 kHz. It was found that rolling reduction ratio is the most effective parameter on reducing both energy loss and coercivity because of increasing aspect ratio with reduction ratio. By increasing aspect ratio from 1 to 9 through hot rolling of pure Fe powder, a significant loss reduction of one-third that of SPS sample was achieved.

  • PDF

Fabrication of Uniform TiO2 Blocking Layers for Prevention of Electron Recombination in Dye-Sensitized Solar Cells (염료감응형 태양전지의 전자재결합 방지를 위한 균일한 TiO2 차단층의 제조)

  • Bae, Ju-won;Koo, Bon-Ryul;Lee, Tae-Kuen;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Uniform $TiO_2$ blocking layers (BLs) are fabricated using ultrasonic spray pyrolysis deposition (USPD) method. To improve the photovoltaic performance of dye-sensitized solar cells (DSSCs), the BL thickness is controlled by using USPD times of 0, 20, 60, and 100 min, creating $TiO_2$ BLs of 0, 40, 70, and 100 nm, respectively, in average thickness on fluorine-doped tin oxide (FTO) glass. Compared to the other samples, the DSSC containing the uniform $TiO_2$ BL of 70 nm in thickness shows a superior power conversion efficiency of $7.58{\pm}0.20%$ because of the suppression of electron recombination by the effect of the optimized thickness. The performance improvement is mainly attributed to the increased open-circuit voltage ($0.77{\pm}0.02V$) achieved by the increased Fermi energy levels of the working electrodes and the improved short-circuit current density ($15.67{\pm}0.43mA/cm^2$) by efficient electron transfer pathways. Therefore, optimized $TiO_2$ BLs fabricated by USPD may allow performance improvements in DSSCs.

Single-Inductor Multiple-Output DC-DC Converter with Negative Feedback Selection Circuit (부궤환 선택회로를 갖는 단일 인덕터 다중 출력 직류-직류 변환기)

  • Gong, Jung-Chul;Roh, Yong-Seong;Moon, Young-Jin;Choi, Woo-Seok;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.23-30
    • /
    • 2011
  • This paper presents a Single-Inductor Multiple-Output (SIMO) DC-DC Converter with a negative feedback selection circuit to improve a regulation property at light load and to generate independent multiple outputs. The conventional SIMO DC-DC converter with a fixed negative feedback circuit cannot regulate correctly at light load. The SIMO DC-DC converter with the proposed negative feedback selection circuit has been designed in 0.35um 2-poly 3-metal BCDMOS. This converter is dual output boost converter with the 1.5V input and 2.5V, 3.0V output. The power conversion efficiency varies from 59% at 10mA loads to 85% at 50mA loads.

Design of Single-Inductor Dual-Output Boost-Boost DC-DC Converter with Dual Feedback Loop Based on Relative Sawtooth Generator (Dead-time을 갖는 톱니파 발생기를 이용한 이중 피드백 루프 기반 단일 인덕터 이중 출력 승압형 변압기 설계)

  • Yun, Dam;Kim, Dong-Young;Lee, Kang-Yoon
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.220-227
    • /
    • 2014
  • This paper presents a control method of Single-Inductor Dual-Output DC-DC Converter using Common mode feedback and differential feedback loops. To generate duty used for differential mode feedback loop, this paper propose relative sawtooth circuit using current divider circuit which makes ramp signal with variable dead-time. Two outputs of the Single-Inductor Dual-Output DC-DC Converter are specified for 2.8 V and 4.2 V with input voltage 2.5 V. The maximum conversion efficiency of designed SIDO DC-DC Converter is 95% at total output power of 539mW. Cross regulations of Boost1 and Boost2 are 3.57% and 4% each, when increasing twice times output current.

Synthesis and Photovoltaic Properties of Polymers Based on Cyclopentadithiophene and Benzimidazole Units

  • Song, Su-Hee;Park, Sei-Jung;Kwon, Soon-Cheol;Shim, Joo-Young;Jin, Young-Eup;Park, Sung-Heum;Kim, Il;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1861-1866
    • /
    • 2012
  • The new semiconducting copolymers with 4,4-dialkyl-$4H$-cyclopenta[2,1-$b$:3,4-$b^{\prime}$]dithiophene and 2,2-dimethyl-$2H$-benzimidazole units were synthesized. The fused aromatic rings, such as cyclopentadithiophene (CPDT) unit, can make the polymer backbone more rigid and coplanar, which induces long conjugation length, narrow band gap, and strong intermolecular ${\pi}-{\pi}$ interaction. The stacking ability was controlled through attaching of linear or branched alkyl side chains. The spectra of PEHCPDTMBI and PHCPDTMBI in the solid films show absorption bands with maximum peaks at 401, 759 and 407, 768 nm, and the absorption onsets at 925 and 954 nm, corresponding to band gaps of 1.34 and 1.30 eV, respectively. The devices comprising PHCPDTMBI with $TiO_X$ showed a $V_{OC}$ of 0.39 V, a $J_{SC}$ of 1.14 $mA/cm^2$, and a $FF$ of 0.34, giving a power conversion efficiency of 0.15%. The PHCPDTMBI with linear alkyl chain on CPDT shows good solubility in organic solvent with higher PCE value than that of PEHCPDTMBI.

A brief review of the bilayer electrolyte strategy to achieve high performance solid oxide fuel cells (고성능 고체산화물 연료전지를 위한 이중층 전해질 전략)

  • Park, Jeong Hwa;Kim, Doyeub;Kim, Kyeong Joon;Bae, Kyung Taek;Lee, Kang Taek
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.184-199
    • /
    • 2020
  • The solid oxide fuel cells (SOFCs) are the one of the most promising energy conversion devices which can directly convert chemical energy into electric power with high efficiency and low emission. The lowering operating temperature below 800 ℃ has been considered as the mostly considerable research and development for commercialization. The major issue is to maintain reasonably high performance of SOFCs at reduced temperatures due to increment of polarization resistance of electrodes and electrolyte. Thus, the alternative materials with high catalytic activities and fast oxygen ion conductivity are required. For recent advances in electrolyte materials and technology, newly designed, highly conductive electrolyte materials and structural engineering of them provide a new path for further reduction in ohmic polarization resistance from electrolytes. Here, a powerful strategy of the bilayer concept with various oxide electrolytes of SOFCs are briefly reviewed. These recent developments also highlight the need for electrolytes with greater conductivity to achieve a high performance, thus providing a useful guidance for the rational design of cell structures for SOFCs. Moreover, cell design, materials compatibility, processing methods, are discussed, along with their role in determining cell performance. Results from state-of-the-art SOFCs are presented, and future prospects are discussed.

A Self-Powered RFID Sensor Tag for Long-Term Temperature Monitoring in Substation

  • Chen, Zhongbin;Deng, Fangming;He, Yigang;Liang, Zhen;Fu, Zhihui;Zhang, Chaolong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.501-512
    • /
    • 2018
  • Radio frequency identification (RFID) sensor tag provides several advantages including battery-less operation and low cost, which are suitable for long-term monitoring. This paper presents a self-powered RFID temperature sensor tag for online temperature monitoring in substation. The proposed sensor tag is used to measure and process the temperature of high voltage equipments in substation, and then wireless deliver the data. The proposed temperature sensor employs a novel phased-locked loop (PLL)-based architecture and can convert the temperature sensor in frequency domain without a reference clock, which can significantly improve the temperature accuracy. A two-stage rectifier adopts a series of auxiliary floating rectifier to boost its gate voltage for higher power conversion efficiency. The sensor tag chip was fabricated in TSMC $0.18{\mu}m$ 1P6M CMOS process. The measurement results show that the proposed temperature sensor tag achieve a resolution of $0.15^{\circ}C$/LSB and a temperature error of $-0.6/0.7^{\circ}C$ within the range from $-30^{\circ}C$ to $70^{\circ}C$. The proposed sensor tag achieves maximum communication distance of 11.8 m.

Development of 3.0[kW]class Fuel Cell Power Conversion System (3[kW]급 연료전지용 전력변환장치의 개발)

  • Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.54-63
    • /
    • 2007
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage $380[V_{DC}]$ and a PWM inverter with LC filter to convent the DC voltage to single-phase $220[V_{AC}]$. Expressly, a tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed high frequency isolated ZVZCS PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of 93-97[%]is obtained over the wide output voltage regulation ranges and load variations.

Fabrication of Cu2SnS3 (CTS) thin Film Solar Cells by Sulfurization of Sputtered Metallic Precursors (스퍼터법을 이용한 메탈 전구체기반의 Cu2SnS3 (CTS) 박막 태양전지 제조 및 특성 평가)

  • Lee, Ju Yeon;Kim, In Young;Minhao, Wu;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.135-139
    • /
    • 2015
  • $Cu_2SnS_3$ (CTS) based thin film solar cells (TFSCs) are of great interest because of its earth abundant, low-toxic and eco-friendly material with high optical absorption coefficient of $10^4cm^{-1}$. In this study, the DC sputtered precursor thin films have been sulfurized using rapid thermal annealing (RTA) system in the graphite box under Ar gas atmosphere for 10 minute. The systematic variation of sulfur powder during annealing process has been carried out and their effects on the structural, morphological and optical properties of CTS thin films have been investigated. The preliminary power conversion efficiency of 1.47% with a short circuit current density of $33.9mA/cm^2$, an open circuit voltage of 159.7 mV, and a fill factor of 27% were obtained for CTS thin film annealed with 0.05g of S powder, although the processing parameter s have not yet been optimized.