• Title/Summary/Keyword: Power conversion

Search Result 2,847, Processing Time 0.037 seconds

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.

An Analysis of Optimal Operation Strategy of ESS to Minimize Electricity Charge Using Octave (Octave를 이용한 전기 요금 최소화를 위한 ESS 운전 전략 최적화 방법에 대한 분석)

  • Gong, Eun Kyoung;Sohn, Jin-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.85-92
    • /
    • 2018
  • Reductions of the electricity charge are achieved by demand management of the load. The demand management method of the load using ESS involves peak shifting, which shifts from a high demand time to low demand time. By shifting the load, the peak load can be lowered and the energy charge can be saved. Electricity charges consist of the energy charge and the basic charge per contracted capacity. The energy charge and peak load are minimized by Linear Programming (LP) and Quadratic Programming (QP), respectively. On the other hand, each optimization method has its advantages and disadvantages. First, the LP cannot separate the efficiency of the ESS. To solve these problems, the charge and discharge efficiency of the ESS was separated by Mixed Integer Linear Programming (MILP). Nevertheless, both methods have the disadvantages that they must assume the reduction ratio of peak load. Therefore, QP was used to solve this problem. The next step was to optimize the formula combination of QP and LP to minimize the electricity charge. On the other hand, these two methods have disadvantages in that the charge and discharge efficiency of the ESS cannot be separated. This paper proposes an optimization method according to the situation by analyzing quantitatively the advantages and disadvantages of each optimization method.

A Study on the Optimization of the SiNx:H Film for Crystalline Silicon Sloar Cells (결정질 실리콘 태양전지용 SiNx:H 박막 특성의 최적화 연구)

  • Lee, Kyung-Dong;Kim, Young-Do;Dahiwale, Shailendra S.;Boo, Hyun-Pil;Park, Sung-Eun;Tark, Sung-Ju;Kim, Dong-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The Hydrogenated silicon nitride (SiNx:H) using plasma enhanced chemical vapor deposition is widely used in photovoltaic industry as an antireflection coating and passivation layer. In the high temperature firing process, the $SiN_x:H$ film should not change the properties for its use as high quality surface layer in crystalline silicon solar cells. Initially PECVD-$SiN_x:H$ film trends were investigated by varying the deposition parameters (temperature, electrode gap, RF power, gas flow rate etc.) to optimize the process parameter conditions. Then by varying gas ratios ($NH_3/SiH_4$), the hydrogenated silicon nitride films were analyzed for its optical, electrical, chemical and surface passivation properties. The $SiN_x:H$ films of refractive indices 1.90~2.20 were obtained. The film deposited with the gas ratio of 3.6 (Refractive index=1.98) showed the best properties in after firing process condition. The single crystalline silicon solar cells fabricated according to optimized gas ratio (R=3.6) condition on large area substrate of size $156{\times}156mm$ (Pseudo square) was found to have the conversion efficiency as high as 17.2%. Optimized hydrogenated silicon nitride surface layer and high efficiency crystalline silicon solar cells fabrication sequence has also been explained in this study.

Anti-Inflammatory Activities of Extracts from Fermented Taraxacum platycarpum D. Leaves Using Hericium erinaceum Mycelia (노루궁뎅이버섯 균사체로 발효한 민들레잎 추출물의 항염증 활성)

  • Kim, Yon-Suk;Joung, Mi-Yeun;Ryu, Beom-Seok;Park, Pyo-Jam;Jeong, Jae-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.20-26
    • /
    • 2016
  • This study investigated the fermentation effect of Taraxacum platycarpum Dahlst. leaf extracts using Hericium ernaceum mycelia to test antioxidant and anti-inflammatory activities in vitro. The antioxidant activities of fermented or non-fermented extracts of T. platycarpum leaves were determined by 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, ferric reducing antioxidant power, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity. The leaf extract of T. platycarpum showed higher antioxidant activity than extract of fermented leaves. However, ethanolic extract of fermented T. platycarpum leaves decreased levels of nitric oxide production and pro-inflammatory cytokines such as interleukin-6 and tumor necrosis factor-${\alpha}$ in lipopolysaccharide-stimulated RAW 264.7 cells. Moreover, fermented leaf extract suppressed protein expression of inducible nitric oxide synthase in RAW 264.7 cell culture. Therefore, the enhanced anti-inflammatory activity of ethanolic extracts of fermented T. platycarpum leaves might be attributed to the molecular conversion of leaf ingredients during fermentation and the active ingredients might have specific affinity with ethanol during extraction.

The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer (P3HT:PCBM 활성층을 갖는 유기 박막태양전지의 후속 열처리 효과)

  • Jang, Seong-Kyu;Gong, Su-Cheol;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.63-67
    • /
    • 2010
  • The organic solar cells with Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structure were fabricated using regioregular poly (3-hexylthiophene) (P3HT) polymer:(6,6)- phenyl $C_{61}$-butyric acid methyl ester (PCBM) fullerene polymer as the bulk hetero-junction layer. The P3HT and PCBM as the electron donor and acceptor materials were spin casted on the indium tin oxide (ITO) coated glass substrates. The optimum mixing concentration ratio of photovoltaic layer was found to be P3HT:PCBM = 4:4 in wt%, indicating that the short circuit current density ($J_{SC}$), open circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency (PCE) values were about 4.7 $mA/cm^2$, 0.48 V, 43.1% and 0.97%, respectively. To investigate the effects of the post annealing treatment, as prepared organic solar cells were post annealed at the treatment time range from 5min to 20min at $150^{\circ}C$. $J_{SC}$ and $V_{OC}$ increased with increasing the post annealing time from 5min to 15min, which may be originated from the improvement of the light absorption coefficient of P3HT and improved ohmic contact between photo voltaic layer and Al electrode. The maximum $J_{SC},\;V_{OC}$, FF and PCE values of organic solar cell, which was post annealed for 15min at $150^{\circ}C$, were found to be about 7.8 $mA/cm^2$, 0.55 V, 47% and 2.0%, respectively.

The Effect of Ag thickness on Optical and Electrical Properties of V2O5/Ag/ITO Multilayer (Ag의 두께에 따른 V2O5/Ag/ITO 구조의 다층 박막의 광학적, 전기적 특성)

  • Ko, Younghee;Park, Gwanghoon;Ko, Hang-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.7-11
    • /
    • 2014
  • Recently, the buffer layers consisting of poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT-PSS) are extensively used to improve power conversion efficiency (PCE) of organic solar cells. However, PEDOT-PSS is not suitable for mass production of organic solar cells due to its intrinsic acid and hygroscopic properties. Moreover, because of chemical reactions between indium tin oxide (ITO) layer and PEDOT-PSS layer, the interface is not stable. For these reasons, alternative materials such as $V_2O_5$ have been developed to be an effective buffer layer. In this work, we used $V_2O_5$/Ag/ITO multilayer structure for the anode buffer layer. With variation of thickness of Ag layer, we investigated the optical and electrical properties of $V_2O_5$/Ag/ITO multi-layer films. As a result, we found that the electrical properties were improved with increasing Ag thickness while optical transmittance decreases in visible wavelength region. From the calculation of figure of merit (FOM) which is used to evaluate proper structure for transparent of optoelectronic, $V_2O_5$/Ag/ITO multilayer electrode was optimized with 4 nm thick Ag layer in optical (88% in transmittance) and electrical ($4{\times}10^{-4}{\Omega}cm$) properties. This indicates that $V_2O_5$/Ag/ITO multilayer electrode could be a candidate for the anode of optoelectronic devices.

Synthesis and Photovoltaic Properties of New π-conjugated Polymers Based on Benzo[1,2,5]thiadiazole (Benzo[1,2,5]thiadiazole을 기본 골격으로 한 공액고분자의 합성 및 광전변환특성 연구)

  • Bea, Jun Huei;Lim, Gyeong Eun;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.396-401
    • /
    • 2013
  • Alternating copolymers, poly[9-(2-octyl-dodecyl)-9H-carbazole-alt-4,7-di-thiophen-2-yl-benzo[1,2,5]thiadiazole] (PCD20TBT) and poly[9,10-bis-(2-octyl-dodecyloxy)-phenanthrene-alt-4,7-di-thiophen-2-yl-benzo[1,2,5]thiadiazole] (PN40TBT), were synthesized by the Suzuki coupling reaction. The copolymers were soluble in common organic solvents such as chloroform, chlorobenzene, 1,2-dichlorobenzene, tetrahydrofuran and toluene. The maximum absorption wavelength and the band gap of PCD20TBT were 535 nm and 1.75 eV, respectively. The maximum absorption wavelength and the band gap of PN40TBT were 560 nm and 1.97 eV, respectively. The HOMO and the LUMO energy level of PCD20TBT were -5.11 eV and -3.36 eV, respectively. As for PN40TBT, the HOMO and the LUMO energy level of PCD20TBT were -5.31 eV and -3.34 eV, respectively. The polymer solar cells (PSCs) based on the blend of copolymer and PCBM (1 : 2 by weight ratio) were fabricated. The power conversion efficiencies of PSCs based on PCD20TBT and PN40TBT were 0.52% and 0.60%, respectively. The short circuit current density ($J_{SC}$), fill factor (FF) and open circuit voltage ($V_{OC}$) of the device with PCD20TBT were $-1.97mA/cm^2$, 38.2% and 0.69 V. For PN40TBT, the $J_{SC}$, FF, and $V_{OC}$ were $-1.77mA/cm^2$, 42.9%, and 0.79 V, respectively.

A 10b 100MS/s 0.13um CMOS D/A Converter Based on A Segmented Local Matching Technique (세그먼트 부분 정합 기법 기반의 10비트 100MS/s 0.13um CMOS D/A 변환기 설계)

  • Hwang, Tae-Ho;Kim, Cha-Dong;Choi, Hee-Cheol;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.62-68
    • /
    • 2010
  • This work proposes a 10b 100MS/s DAC based on a segmented local matching technique primarily for small chip area. The proposed DAC employing a segmented current-steering structure shows the required high linearity even with the small number of devices and demonstrates a fast settling behavior at resistive loads. The proposed segmented local matching technique reduces the number of current cells to be matched and the size of MOS transistors while a double-cascode topology of current cells achieves a high output impedance even with minimum sized devices. The prototype DAC implemented in a 0.13um CMOS technology occupies a die area of $0.13mm^2$ and drives a $50{\Omega}$ load resistor with a full-scale single output voltage of $1.0V_{p-p}$ at a 3.3V power supply. The measured DNL and INL are within 0.73LSB and 0.76LSB, respectively. The maximum measured SFDR is 58.6dB at a 100MS/s conversion rate.

Synthesis and Characterization of Quinoxaline-Based Thiophene Copolymers as Photoactive Layers in Organic Photovoltaic Cells

  • Choi, Yoon-Suk;Lee, Woo-Hyung;Kim, Jae-Ryoung;Lee, Sang-Kyu;Shin, Won-Suk;Moon, Sang-Jin;Park, Jong-Wook;Kang, In-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.417-423
    • /
    • 2011
  • A series of new quinoxaline-based thiophene copolymers (PQx2T, PQx4T, and PQx6T) was synthesized via Yamamoto and Stille coupling reactions. The $M_ws$ of PQx2T, PQx4T, and PQx6T were found to be 20,000, 12,000, and 29,000, with polydispersity indices of 2.0, 1.2, and 1.1, respectively. The UV-visible absorption spectra of the polymers showed two distinct absorption peaks in the ranges 350 - 460 nm and 560 - 600 nm, which arose from the ${\pi}-{\pi}^*$ transition of oligothiophene units and intramolecular charge transfer (ICT) between a quinoxaline acceptor and thiophene donor. The HOMO levels of the polymer ranged from -5.37 to -5.17 eV and the LUMO levels ranged from -3.67 to -3.45 eV. The electrochemical bandgaps of PQx2T, PQx4T, and PQx6T were 1.70, 1.71, and 1.72 eV, respectively, thus yielding low bandgap behavior. PQx2T, PQx4T, and PQx6T had open circuit voltages of 0.58, 0.42, and 0.47 V, and short circuit current densities of 2.9, 5.29 and 9.05 mA/$cm^2$, respectively, when $PC_{71}BM$ was used as an acceptor. For the solar cells with PQx2T-PQx6T:$PC_{71}BM$ (1:3) blends, an increase in performance was observed in going from PQx2T to PQx6T. The power conversion efficiencies of PQx2T, PQx4T, and PQx6T devices were found to be 0.69%, 0.73%, and 1.80% under AM 1.5 G (100 mW/$cm^2$) illumination.

Upconversion luminescence from poly-crystalline Yb3+, Er3+ co-doped NaGd(MoO4)2 by simple solid state method (Er3+, Yb3+ 이온이 동시 도핑된 NaGd(MoO4)2의 업컨버젼 분석)

  • Kang, Suk Hyun;Kang, Hyo Sang;Lee, Hee Ae;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.159-163
    • /
    • 2016
  • Up-conversion (UC) luminescence properties of polycrystalline $Er^{3+}/Yb^{3+}$ doped $NaGd(MoO_4)_2$ phosphors synthesized by a simple solid-state reaction method were investigated in detail. Used to 980 nm excitation (InfraRed area), $Er^{3+}/Yb^{3+}$ co-doped $NaGd(MoO_4)_2$ exhibited very weak red emissions near 650 and 670 nm, and very strong green UC emissions at 540 and 550 nm corresponding to the infra 4f transitions of $Er^{3+}(^4F_{9/2},\;^2H_{11/2},\;^4S_{3/2}){\rightarrow}Er^{3+}(^4I_{15/2})$. The optimum doping concentration of $Er^{3+}$, $Yb^{3+}$ for highest emission intensity was determined by XRD and PL analysis. The $Er^{3+}/Yb^{3+}$ (10.0/10.0 mol%) co-doped $NaGd(MoO_4)_2$ phosphor sample exhibited very strong shiny green emission. A possible UC mechanism for $Er^{3+}/Yb^{3+}$ co-doped $NaGd(MoO_4)_2$ depending on the pump power dependence was discussed.