• Title/Summary/Keyword: Power conditioning operation

Search Result 227, Processing Time 0.026 seconds

An Operation Status Analysis of Library Building using BEMS Data; Energy Performance Evaluation on Initial Stage of Completion (BEMS 데이터를 활용한 도서관 건물의 운전현황 분석 -준공 초기단계의 건물 에너지 성능 평가)

  • Park, Seong-cheol;Ha, Ju-wan;Kim, Hwan-yong;Song, Young-hak
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.669-679
    • /
    • 2018
  • Energy consumption savings in buildings should be reviewed in diverse areas such as air conditioning system and lighting responsible for cooling and heating, and energy management systems such as BAS (Building Automation System) and BEMS (Building Energy Management System) are introduced to improve energy consumption efficiency and to promote economic control of related facilities by integrated management of energy generated and consumption in buildings. The measured building of this study uses regenerative geothermal system. Measured values of heat pump and system COP were 4.7 and 4.2 respectively, and they were found to be higher 11.9% and 23.5% than rated values. As a result of analyzing the air conditioning and lighting energy from the first floor to the fourth floor performing the air conditioning, the second and third floors, which have a high frequency of use, are compared with the first and fourth floors 50% higher energy consumption ratio. On the other hand, the general heat storage system uses the nighttime power of the previous day to store heat and use it the next day. The total number of days of abnormal operation during the summer season is 61 days. The electricity cost corresponding to the abnormal operation is 1,840,641 KRW, and the normal operation using the nighttime power is 1,363,561 KRW, which is difference of 477,080 KRW, 35% increase in cost. We will utilize it as the main data of BEMS through analysis of winter operation characteristics as well as summer operation characteristics.

Control and Operation of a Small Scale Distributed Energy System (소규모 분산에너지시스템의 제어구조 및 운전 (마이크로터빈 중심))

  • Hong, Won-Pyo;Cho, Hoon-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1139_1141
    • /
    • 2009
  • Distributed Generation (DG) is predicted to play a important role in electric power system in the near future. insertion of DG system into existing distribution network has great impact on real-time system operation and planning. It is widely accepted that micro turbine generation (MTG) systems are currently attracting lot of attention to meet customers need in the distributed power generation market In order to investigate the performance of MT generation systems, their efficient modeling is required. This paper presents the modeling and simulation of a MT generation system suitable for grid-connected operation. The system comprises of a permanent magnet synchronous generator driven by a MT. A brief description of the overall system is given, and mathematical models for the MT and permanent magnet synchronous generator are presented. Also, the use of power electronics in conditioning the power output of the generating system is demonstrated. Simulation studies with MATLAB/Simulink have been carried out in grid-connected operation mode of a DG system. The control strategies for grid connected operation mode of DG system is also presented.

  • PDF

Selection and Analysis of Operating Parameters for Condition Monitoring of Emergency Diesel Generator at Nuclear Power Plant (원자력발전소 비상디젤발전기 상태감시를 위한 운전인자 선정에 관한 연구)

  • Park, J.H.;Choi, K.H.;Lee, S.G.;Park, J.E.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.3-8
    • /
    • 2007
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear reactor at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the plant safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite emergency diesel generator should be ensured by a conditioning monitoring system designed to maintain and monitor and forecast the reliability level of diesel generator. To do this kind of diesel generator condition monitoring we reviewed several operating factors and history of the wolsong unit 3 diesel generator and selected the proper conditioning monitoring operating factors.

  • PDF

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.

Induction Generator Using PWM Converter and Its Small-Scale Power Applications to Variable-Speed Renewable-Energy Generation

  • Ahmed Tarek;Nishida Katsumi;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2005
  • This paper describes a simple control structure and power conditioning system for an indirect vector controlled stand-alone induction generator (IG) used to operate under variable speed. The required reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM converter size. The vector control structure for the variable speed IG power conditioning system compensates for changes in the electrical three-phase and DC loads while considering the magnetizing curve of the IG. The vector control structure is developed to regulate the DC link voltage of the PWM converter and the IG output voltage. The experimental and simulated performance results of the IG power conditioning system at various speeds and loads are given and show that this proposed scheme can be used efficiently for a variable speed, wind energy conversion system.

The Development & Performance Test of 10[kW] Power Conditioning System for Microgrid (마이크로그리드용 10[kW] PCS 개발 및 성능시험)

  • Lee, Hak-Ju;Chae, Woo-Kyu;Park, Jung-Sung;Kim, Ju-Yong;Kim, Chan-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.55-62
    • /
    • 2011
  • PCS(Power Conditioning System) is the necessary component in Microgrid, composed of multiple distributed generators and energy storage system. In this paper, the functions of PCS are defined and 10[kW] PCS for PV and BESS are developed. To apply PCSs to Microgrid, this paper presents a 3-phase inverter with the decoupling current controller, voltage controller and DPLL control system. PCSs were applied to 120[kW] pilot plant and its performance tests were carried out. Test results of PCS at each operation mode show stable in Microgrid.

Power Conditioning for a Small-Scale PV System with Charge-Balancing Integrated Micro-Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Seo, Jung-Won;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1318-1328
    • /
    • 2015
  • The photovoltaic (PV) power conditioning system for small-scale applications has gained significant interest in the past few decades. However, the standalone mode of operation has been rarely approached. This paper presents a two-stage multi-level micro-inverter topology that considers the different operation modes. A multi-output flyback converter provides both the DC-Link voltage balancing for the multi-level inverter side and maximum power point tracking control in grid connection mode in the PV stage. A modified H-bridge multi-level inverter topology is included for the AC output stage. The multi-level inverter lowers the total harmonic distortion and overall ratings of the power semiconductor switches. The proposed micro-inverter topology can help to decrease the size and cost of the PV system. Transient analysis and controller design of this micro-inverter have been proposed for stand-alone and grid-connected modes. Finally, the system performance was verified using a 120 W hardware prototype.

A Flyback-Assisted Single-Sourced Photovoltaic Power Conditioning System Using an Asymmetric Cascaded Multilevel Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2272-2283
    • /
    • 2016
  • This paper proposes a power conditioning system (PCS) for distributed photovoltaic (PV) applications using an asymmetric cascaded multilevel inverter with a single PV source. One of the main disadvantages of the cascaded multilevel inverters in PV systems is the requirement of multiple isolated DC sources. Using multiple PV strings leads to a compromise in either the voltage balance of individual H-bridge cells or the maximum power point tracking (MPPT) operation due to localized variations in atmospheric conditions. The proposed PCS uses a single PV source with a flyback DC-DC converter to facilitate a reduction of the required DC sources and to maintain the voltage balance during MPPT operation. The flyback converter is used to provide input for low-voltage H-bridge cells which processes only 20% of the total power. This helps to minimize the losses occurring in the proposed PCS. Furthermore, transient analyses and controller design for the proposed PCS in both the stand-alone mode and the grid-connection mode are presented. The feasibility of the proposed PCS and its control scheme have been tested using a 1kW hardware prototype and the obtained results are presented.

Power Flow Control of Grid-Connected Fuel Cell Distributed Generation Systems

  • Hajizadeh, Amin;Golkar, Masoud Aliakbar
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • This paper presents the operation of Fuel Cell Distributed Generation(FCDG) systems in distribution systems. Hence, modeling, controller design, and simulation study of a Solid Oxide Fuel Cell(SOFC) distributed generation(DG) system are investigated. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic and the neural network for the overall system is presented in order to activate power control and power quality improvement. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.