• Title/Summary/Keyword: Power closed-loop control

Search Result 267, Processing Time 0.025 seconds

THE DYNAMICAL PERFORMANCE OF CONTROLLED FLYWHEELING DUAL CONVERTER-FED DC MOTOR DRIVES WITH SIMULATANEOUS CONTROL AND FUZZY PI CONTROLLER

  • Soltani, Jafar;Sojdei, Jamshid
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.414-419
    • /
    • 1998
  • This paper describes the dynamical performance of a four-quadrant circulation current mode control of dc motor drive, using the controlled flywleeling technique, a four-quadrant closed-loop control drive with an inner current control loop and a speed fuzzy PI regulator is designed. The obtained computer simulation results of a dc motor drive below and above the base speed are demonstrated. These result show that compare to a conventional dual-converter-fed dc motor drive with simultaneous control, the overal system performance has been improved and also, agood stability and robstness has been achieved.

  • PDF

A study on single phase UPS inverter control with PDFF method (PDFF 제어기법을 이용한 단상 UPS 인버터 전압, 전류제어에 관한 연구)

  • Oh B. W.;Lee S. Y.;Lee Y. K.;Jeon Y. S.;Choe G. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.799-802
    • /
    • 2004
  • There are many methods in controlling inverter's voltage and currents. most of all, PI control method is a general method. PI control has some merits. But, PI control has zero effect. So, steady-state response errors always exist by the zero effect. For removing the steady-state error, This paper presents the modeling, design and analysis of the double loop feedback control scheme. and computing the value of parameters and applying In the single-phase full bridge inverter for comparison and analysis between the PI control and PDFF control. The system model is employed to examine the dynamics of power circuit and select appropriate feedback variables for stable operation of the closed-loop UPS inverter system. It analyzes and proves the output characteristic of inverter system with the PDFF control.

  • PDF

Decentralized Load-Frequency Control of Interconnected Power Systems with SMES Units and Governor Dead Band using Multi-Objective Evolutionary Algorithm

  • Ganapathy, S.;Velusami, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.443-450
    • /
    • 2009
  • This paper deals with the design of decentralized controller for load-frequency control of interconnected power systems with superconducting magnetic energy storage units and Governor Dead Band Nonlinearity using Multi-Objective Evolutionary Algorithm. The superconducting magnetic energy storage unit exhibits favourable damping effects by suppressing the frequency oscillations as well as stabilizing the inter-area oscillations effectively. The proposed control strategy is mainly based on a compromise between Integral Squared Error and Maximum Stability Margin criteria. Analysis on a two-area interconnected thermal power system reveals that the proposed controller improves the dynamic performance of the system and guarantees good closed-loop stability even in the presence of nonlinearities and with parameter changes.

AC and DC Applications of Induction Generator Excited by Static VAR Compensator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.169-179
    • /
    • 2004
  • This paper presents the steady-state analysis of the three-phase self-excited induction generator (SEIG). The three-phase SEIG with a squirrel cage rotor is driven by a variable-speed prime mover (VSPM) or a constant-speed prime mover (CSPM) such as a wind turbine or a micro gas turbine. Furthermore, a PI closed-loop feedback voltage regulation scheme of the three-phase SEIG driven by a VSPM on the basis of the static VAR compensator (SVC) is designed and evaluated for the stand-alone AC and DC power applications. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of its fast responses and high performances

Static VAR Compensator-based Feedback Control Implementation for Self-Excited Induction Generator Terminal Voltage Regulation Driven by Variable-Speed Prime Mover

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.65-76
    • /
    • 2004
  • In this paper, the steady-state analysis of the three-phase self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) such as a wind turbine is presented. The steady-state torque-speed characteristics of the VSPM are considered with the three-phase SEIG equivalent circuit for evaluating the operating performances due to the inductive load variations. Furthermore, a PI closed-loop feedback voltage regulation scheme based on the static VAR compensator (SVC) for the three-phase SEIG driven by the VSPM is designed and considered for the wind power generation conditioner. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of fast response and high performances.

A study on power system stabilizer using output feedback adaptive variable structure control

  • Shin, Jin-Ho;Jeong, Il-Kwon;Choi, Changkyu;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.177-182
    • /
    • 1994
  • In this paper, an output feedback adaptive variable structure control scheme is presented for stabilization of large scale power systems. An additional input signal which is called a power system stabilizer(PSS) is needed to improve the stability of a power system and to maintain the synchronization of generators. The proposed PSS scheme does not require a priori knowledge of uncertainty bounds. It is guaranteed that the closed-loop system is globally uniformly ultimately bounded by the Lyapunov stability theory. Simulation results for a multimachine power system are given to show the feasibility of the proposed scheme and the superiority of the proposed PSS in comparison with the conventional lead-lag PSS of PID-type.

  • PDF

An Adaptive UPFC Based S tabilizer forDamping of Low Frequency Oscillation

  • Banaei, M.R.;Hashemi, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.197-208
    • /
    • 2010
  • Unified power flow controller (UPFC) is the most reliable device in the FACTS concept. It has the ability to adjust all three control parameters effective in power flow and voltage stability. In this paper, a linearized model of a power system installed with a UPFC has been presented. UPFC has four control loops that by adding an extra signal to one of them, increases dynamic stability and load angle oscillations are damped. In this paper, after open loop eigenvalue (electro mechanical mode) calculations, state-space equations have been used to design damping controller and it has been considered to influence active and reactive power flow durations as the input of damping controller, in addition to the common speed duration of synchronous generators as input damper signal. To increase stability, further Lead-Lag and LQR controllers, a novel on-line adaptive controller has been used analytically to identify power system parameters. Closed-loop calculations of the electro mechanical mode verify the improvement of system pole placement after controller designing. Suitable operation of adaptive controller to decrease rotor speed oscillations against input mechanical torque disturbances is confirmed by the simulation results.

Decentralized Nonlinear Voltage Control of Multi-machine Power Systems with Nonlinear Interconnections

  • Lee, Jae-Won;Yoon, Tae-Woong;Im, Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.448-453
    • /
    • 2004
  • In this paper, an adaptive robust decentralized excitation control scheme is proposed to enhance the transient stability of a multi-machine power system. We employ a state model where the terminal voltage of each generator is regarded as part of the state. Using this state model, the proposed controller is obtained in two steps: firstly, a robust controller is designed for the nominal system with no interconnection terms; then an adaptive compensator is proposed to deal with those interconnection terms, whose upper bounds are estimated. The resulting adaptive scheme guarantees the practical stability of the closed-loop, and also the uniform ultimate boundedness in the presence of disturbances.

  • PDF

Development of the Base Station Transceiver Subsystem in the CDMA Mobile System

  • Lee, Dong-Wook;Yoo, Ki-Suk;Kim, Jin-Su;Kim, Myoung-Jin;Park, Jae-Hong
    • ETRI Journal
    • /
    • v.19 no.3
    • /
    • pp.116-140
    • /
    • 1997
  • The base station transceiver subsystem (BTS) of the CDMA Mobile System is interfaced to mobile stations over the air and to the wired network through a packet switched interconnection network. The potential benefits of CDMA technology are achieved when the transmitter and the receiver are properly designed and implemented. The physical layer of the interface at the base station is implemented with the CDMA ASICs and control circuits in channel card of the BTS. We present the design perspectives and structural illustration of the BTS. Base station modem ASICs and their control to implement the CDMA receiver, Baseband and RF signal processing blocks, and BTS controller are described. Elaborate power control is essential to ensure the high capacity which is one of advantages of the CDMA technology. The closed loop reverse link power control and the forward link power control operated in the BTS are described.

  • PDF

Design of optimal P.I.D controller for unknwon long time delayed system (시간지연이 큰 미지의 시스템에 대한 최적 P.I.D 제어기 설계)

  • 박익수;문병희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.164-167
    • /
    • 1996
  • This paper presents an off-line P.I.D parameter estimation method during normal operation in power plant. The process parameters are estimated using the recursive least square method. The controller parameters are estimated on the basis of desired characteristics of the dynamic model of the closed-loop control.

  • PDF