• Title/Summary/Keyword: Power characteristics

Search Result 16,280, Processing Time 0.037 seconds

Quench Characteristics of Resistive Superconducting Fault Current Limiters (저항형 초전도 한류소자의 퀜치 특성)

  • Kim, Hye-Rim;Hyun, Ok-Bae;Choi, Hyo-Sang;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.214-217
    • /
    • 1999
  • We investigated the quench characteristics of meander line type resistive superconducting fault current limiters based on YBCO thin films grown on 2" diameter LaAlO$_3$ substrates. A gold layer was deposited onto the 0.4 ${\mu}$ m thick YBCO film to disperse the heat generated at hot spots, prior to patterning into 1 mm wide meander lines by photolithography. The limiters were tested with simulated fault currents of various amplitudes. The quench started at 10 A and was completed within 1 msec at the fault current of 65 A$_{peak}$. The dynamic quench characteristics were explained based on the heat conduction within the film and the heat transfer between the film and the surrounding liquid nitrogen. The heat transfer coefficient per unit area was estimated to be 3.0 W/cm$^2$K.

  • PDF

Harmonics based loss characteristics analysis of HTS DC power cable (고조파에 의한 초전도 직류 전력케이블의 손실 특성 분석)

  • Kim, S.K.;Kim, S.H.;Park, M.W.;Yu, I.K.;Lee, S.J.;Cho, J.W.;Sim, K.D.;Won, Y.J.;Hwang, S.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.19-23
    • /
    • 2011
  • An HTS DC power cable is expected to perfectly eliminate transmission loss caused by resistance. However, when the HTS DC power cable is applied to the power system, loss of the HTS DC power cable is generated due to harmonics caused by HVDC converter. We designed and analyzed the HTS DC power cable with a critical current of 1 kA to investigate the loss characteristics using a finite element method package. In this paper, the loss characteristics caused by harmonics in the HTS DC power cable were analyzed according to order and magnitude of harmonics. Based on the analysis results, the critical current of HTS DC power cable considered with the rated current could be determined to minimize the capacity of cooling system for the design the HTS DC power cable.

Control Strategy and Stability Analysis of Virtual Synchronous Generators Combined with Photovoltaic Dynamic Characteristics

  • Ding, Xiying;Lan, Tianxiang;Dong, Henan
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1270-1277
    • /
    • 2019
  • A problem with virtual synchronous generator (VSG) systems is that they are difficult to operate stably with photovoltaic (PV) power as the DC side. With this problem in mind, a PV-VSG control strategy considering the dynamic characteristics of the DC side is proposed after an in-depth analysis of the dynamic characteristics of photovoltaic power with a parallel energy-storage capacitor. The proposed PV-VSG automatically introduces DC side voltage control for the VSG when the PV enters into an unstable working interval, which avoids the phenomenon where an inverter fails to work due to a DC voltage sag. The stability of the original VSG and the proposed PV-VSG were compared by a root locus analysis. It is found that the stability of the PV-VSG is more sensitive to the inertia coefficient J than the VSG, and that a serious power oscillation may occur. According to this, a new rotor model is designed to make the inertial coefficient automatically change to adapt to the operating state. Experimental results show that the PV-VSG control strategy can achieve stable operation and maximum power output when the PV output power is insufficient.

Switching Characteristics due to the Impurity Concentration and the Channel Length in Lateral MOS-controlled Thyristor (수평 구조의 MOS-controlled Thyristor에서 채널에서의 길이 및 불순물 농도에 의한 스위칭 특성)

  • Kim, Nam-Soo;Cui, Zhi-Yuan;Lee, Kie-Yong;Ju, Byeong-Kwon;Jeong, Tae-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • The switching characteristics of MOS-Controlled Thyristor(MCT) is studied with variation of the channel length and impurity concentration in ON and OFF FET channel. The proposed MCT power device has the lateral structure and P-epitaxial layer in substrate. Two dimensional MEDICI simulator and PSPICE simulator are used to study the latch-up current and forward voltage-drop from the characteristics of I-V and the switching characteristics with variation of channel length and impurity concentration in P and N channel. The channel length and N impurity concentration of the proposed MCT power device show the strong affect on the transient characteristics of current and power. The N channel length affects only on the OFF characteristics of power and anode current, while the N doping concentration in P channel affects on the ON and OFF characteristics.

Fault Analysis Method for Power Distribution Grid with PCS-based Distributed Energy Resources

  • Kim, Dong-Eok;Cho, Namhun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.522-532
    • /
    • 2017
  • In this study, we propose a fault analysis method for a power distribution grid with PCS-based DERs. We first explain the characteristics of a PCS-based DER. According to the characteristics, the DER is considered as a current-controlled voltage source, which produces varying voltages within a certain limit so that currents equal to given references flowing from the DER to the grid (currents controlled). So, we introduce the symmetrical equivalent models in the form of varying voltage source for fault analysis and then, construct a convex optimization problem to solve the fault problem associated with the equivalent models and grid conditions. Thus, the proposed method enables to perform a proper fault analysis considering the characteristics of the DER, which are currents controlled, voltage limited, and unity power factor achievement. To verify the validity of the proposed method, we perform computer simulations with the proposed method and with MATLAB Simulink, and the results are compared.

Global Maximum Power Point Tracking Method of Photovoltaic Array using Boost Converter (부스트 컨버터를 이용한 태양전지 어레이 전역 최대전력 점 추종 방법)

  • Hwang, Dong-Hyeon;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.216-223
    • /
    • 2018
  • Since solar cells have non-linear voltage-current output characteristics, Photovoltaic systems require the Maximum Power Point Tracking(MPPT) function. For this reason, a large number of MPPT techniques have been studied. However, the conventional MPPT techniques may fail to track the maximum power point when partial shading occurs in the solar cell array due to its characteristics. Therefore, it is necessary to research the MPPT technique that can follow the maximum power point in the partial shadow condition. In this paper, the characteristics of solar cell arrays in partial shadowing are analyzed and the MPPT technique which can follow the maximum power point in partial shadow condition has been proposed. To validate the proposed MPPT method, simulation and experimentation results are provided.

Wear Characteristics of AlBC for Piston Head of Power Servo Cylinder (Power 서보 실린더의 피스톤 헤드용 AlBC의 마멸 특성)

  • Cho, Yon-Sang;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.65-70
    • /
    • 2011
  • The power servo cylinder for driving accurately turbine stop valve of an atomic power plant is necessary to do turn-over owing to a leakage of oil and a structure problem, especially, it of a power plant be in demand a high quality standard depends entirely on import. There are much problem that the AlBC be to used as a material of piston head in cylinder are caused by wear. Therefore, it is necessary to examine friction characteristics of it. In this study, wear test experiments was carried out with AlBC and SCM440, using reciprocating friction tester of pin on disk. This result was shown that the wear mechanism of AlBC on working condition is adhesive wear and the maximum temperature of infra redray thermal image of frictional surface show over 2 mm from contact surface of pin and disk.

Input Current Characteristics of a Three-Phase Diode Rectifier with Capacitive Filter under Line Voltage Unbalance Condition (커패시터 필터를 갖는 3상 다이오드 정류회로의 불형전원에서의 입력전류 특성)

  • 정승기;이동기;박기원
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.38-38
    • /
    • 2001
  • The three-phase diode rectifier with capacitive filter is highly sensitive to line voltage unbalance. Because of its inherent nonlinear characteristics, small line voltage unbalance may cause highly unbalanced line current, causing detrimental effects on power quality. This paper presents a theoretical basis on this ′unbalance amplification effect′ and derives an analytical model of line current characteristics under unbalanced line voltage condition for various modes of operation. The results provide a basic guideline for optimal design of a three-phase diode rectifier with capacitive filter that is most commonly used for interfacing various power conversion equipments to power lines.

Dynamic Performance Comparision of various Combination of reactive power compensators (조상설비 조합에 따른 정태적 특성 및 동태적 특성 비교)

  • Kang Sang Gyun;Jang Gil Soo;Lee Byong Jun;Kwon Sae Hyuk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.224-226
    • /
    • 2004
  • Flexible AC Transmission System (FACTS) can greatly reinforce power systems through improvement of power transmission capacity and utilization of equipment under the circumstance of continuous load growth and deregulation SVC and STATCOM are shunt FACT devices that have similar static characteristics with Mwhuical Swikhed Capacitor (MSC). The main issue of this paper is the analysis of different dynamic characteristics when STATCOM is solely adopted and when STATCOM is adopted with combination of other reactive power compensator such as SVC and M5C. Furthermore, better application of reactive power compensators can be clarified through analysis of dynamic characteristics of various combinations of reactive power compensators.

  • PDF

Electric Output Characteristics According to Irradiation for Photovoltaic Systems (태양광 발전시스템의 일사량에 따른 출력 특성)

  • Cho, Jae-Chul;Choi, Yong-Sung;Kim, Hyang-Kon;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.189-191
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As output power characteristics according to a irradiation range of $100{\sim}900[W/m^2]$, output power was increased with increasing irradiation. This result corresponds well to the related equation on irradiation and output power.

  • PDF