• Title/Summary/Keyword: Power assembly tools

Search Result 9, Processing Time 0.026 seconds

Calibration Methods for Measurement Uncertainty of Power Assembly Tools (동력식 조립공구의 측정불확도 산출방법 개발)

  • Oh, Se-heon;Kang, Ki-young;Hong, Min-sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.496-501
    • /
    • 2015
  • In this study, calibration procedure of power assembly tools is suggested and methods are developed for calculating measurement uncertainty. Fist of all, the calibration of joint simulator bench (JSB) was carried out for maintaining traceability and the uncertainty components of JSB were analyzed. The influences of tool speed, tolerance, temperature and length of the adapter were examined by the torque measurement values through experiments. From this research, credibility for calibration results could be enhanced. This experimental results, being used as an effective tool for calibration of power assembly tools, will provide and improve the accuracy of the use of the power assembly tools.

Evaluation of Hand-Arm Vibration Exposure Level and Work Environment Satisfaction of Workers in Automobile Manufacturer Assembly Process (자동차 제조업체 조립공정 근로자의 국소진동 노출 수준 및 작업환경 만족도 평가)

  • Seong-Hyun Park;Mo-Yeol Kang;Seung Won Kim;Sangjun Choi
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.103-114
    • /
    • 2023
  • Objectives: This study was conducted to evaluate hand-arm vibration (HAV) exposure levels due to the use of power hand tools and to evaluate the determinants in the automobile assembly process. Methods: The exposure level to HAV was evaluated for 30 work lines in five assembly processes (body, engine, chassis, door, and design) that use air-powered tools and battery-powered tools and operate in circulation for two hours. The 2-hr equivalent energy vibration acceleration, A (2), of the task was measured. The 8-hr equivalent energy vibration acceleration, A (8), was estimated in consideration of the number of tasks that can be performed per day by each process. In addition, a survey on the working environment was conducted with workers exposed to vibration. Results: The geometric mean of the HAV exposure level, A (2), for a total of 30 tasks was 2.51 m/s2, and one case was 10.30 m/s2, exceeding TLV (2hr). The HAV exposure level of A (8) was evaluated from 1.03 m/s2 to 5.36 m/s2. A (2) showed a statistically significant difference (P<0.01) for each process, and the chassis process (GM=3.90 m/s2) was the highest. The larger the tool size and the longer the tool length, the higher was the vibration acceleration when using a battery-powered tool than an air-powered tool (P<0.01). Battery-powered tool users showed higher dissatisfaction on all items than did air-powered tool users. Conclusions: As a result of this study, it is necessary to implement a program to reduce the HAV exposure levels.

An Experimental Study of the Performance Characteristics with Four Different Rotor Blade Shapes on a Small Mixed-Type Turbine

  • Cho Soo-Yong;Cho Tae-Hwan;Choi Sang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1478-1487
    • /
    • 2005
  • A small mixed-type turbine with a diameter of 19.9 mm has been substituted for a rotational part of pencil-type air tool. Usually, a vane-type rotor is applied to the rotational part of the air tool. However, the vane-type rotor has some problems, such as friction, abrasion, and necessity of accurate assembly etc.,. These problems make the life time of the vane-type air tool short, but air tools operated by mixed-type turbines are free of friction and abrasion because the turbine rotor dose not contact with the casing. Moreover, it is assembled easily because of no axis offset. These characteristics are merits for using air tools, but loss of power is inevitable on a non-contacting type rotor due to flow loss, tip clearance loss, and profile loss etc.,. In this study, four different rotors are tested, and their characteristics are investigated by measuring the specific output power. Additionally, optimum nozzle location against the rotor is studied. Output powers are obtained through measured pressure, temperature, torque, rotational speed, and flow rate. The experimental results obtained with four different rotors show that the rotor blade shape greatly influences to the performance, and the optimum nozzle location exists near the mid span of the rotor.

Analysis of the thermal management of a high power LED package with a heat pipe

  • Kim, Jong-Soo;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.96-101
    • /
    • 2016
  • The thermal management of high-power LED components in an assembly structure is crucial for the stable operation and proper luminous function. This study employs numerical tools to determine the optimum thermal design in LEDs with a heat sink consisting of a crevice-type vapor-chamber heat pipe. The effects of the MCPCB are investigated in terms of the substrate thicknesses on which the LEDs are mounted. Further, different placement configurations in a system module are considered. This study found that for a confined area, a power of 40 W/LED is applicable to a high-power package. Furthermore, the thermal conductivity of dielectric layer materials should ideally be greater than 0.9 W/m.K. The temperature conditions of the vapor chamber in a heat pipe greatly affect the thermal performance of the system. At an offset distance of 9.0 mm and a $2^{\circ}C$ increase in the temperature of the heat pipe, the resulting maximum temperature increase is approximately $1.9^{\circ}C$ for each heat dissipation temperature. Finally, at a thermal conductivity of 0.3 W/m.K, it was found that the total thermal resistance changes dramatically. Above 1.2 W/m.K, the resistance change reduces exponentially.

Study of the high pressure hose assemblies by accelerated life test (고압호스 조립체의 가속수명시험에 관한 연구)

  • Lee, Gi Chun;Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.886-892
    • /
    • 2013
  • Hydraulic hose assemblies are used as piping components for construction machinery, automobile, aircraft, industrial machinery, machine tools, and machinery for ships. Then the reliability of hose assemblies is important because total hydraulic system, which used to deliver the fluid power ($P^*Q$) needed to flexibility in the piping system, is not operated if the hose assembly failed in the system. The data of the accelerated life test estimated through the shape parameter(${\beta}$) resulting of the Weibull distribution analysis. This study has tried to reduce the test time resulting from varying impulse pressure range and the flexing diameter. Accelerated life test model for the test results was adopted the GLL(generalized log linear) and the accelerated indexes are identified as 6.64 for the pressure and 4.46 for flexing radius. Also, it found that shape parameter is 6.19, scale parameter(${\eta}$) is $1.035{\times}108$, which were adopted the pressure 35 MPa and the flexing diameter R100 mm in the used condition.

An assessment of the applicability of multigroup cross sections generated with Monte Carlo method for fast reactor analysis

  • Lin, Ching-Sheng;Yang, Won Sik
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2733-2742
    • /
    • 2020
  • This paper presents an assessment of applicability of the multigroup cross sections generated with Monte Carlo tools to the fast reactor analysis based on transport calculations. 33-group cross section sets were generated for simple one- (1-D) and two-dimensional (2-D) sodium-cooled fast reactor problems using the SERPENT code and applied to deterministic steady-state and depletion calculations. Relative to the reference continuous-energy SERPENT results, with the transport corrected P0 scattering cross section, the k-eff value was overestimated by 506 and 588 pcm for 1-D and 2-D problems, respectively, since anisotropic scattering is important in fast reactors. When the scattering order was increased to P5, the 1-D and 2-D problem errors were increased to 577 and 643 pcm, respectively. A sensitivity and uncertainty analysis with the PERSENT code indicated that these large k-eff errors cannot be attributed to the statistical uncertainties of cross sections and they are likely due to the approximate anisotropic scattering matrices determined by scalar flux weighting. The anisotropic scattering cross sections were alternatively generated using the MC2-3 code and merged with the SERPENT cross sections. The mixed cross section set consistently reduced the errors in k-eff, assembly powers, and nuclide densities. For example, in the 2-D calculation with P3 scattering order, the k-eff error was reduced from 634 pcm to -223 pcm. The maximum error in assembly power was reduced from 2.8% to 0.8% and the RMS error was reduced from 1.4% to 0.4%. The maximum error in the nuclide densities at the end of 12-month depletion that occurred in 237Np was reduced from 3.4% to 1.5%. The errors of the other nuclides are also reduced consistently, for example, from 1.1% to 0.1% for 235U, from 2.2% to 0.7% for 238Pu, and from 1.6% to 0.2% for 241Pu. These results indicate that the scalar flux weighted anisotropic scattering cross sections of SERPENT may not be adequate for application to fast reactors where anisotropic scattering is important.

A Study of the Life Characteristic of Hydraulic Hose Assembly by Adopting Temperature-Nonthermal Acceleration Model (온도.비열 가속모형을 적용한 유압호스조립체 수명특성 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Cho, You-Hee;Sim, Sung-Bo;Kim, Jae-Hoon
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.235-244
    • /
    • 2011
  • Hydraulic hose assemblies deliver a fluid power in various oil pressure equipment such as construction machinery, automobile, aircraft, industrial machinery, machine tools and machinery for ships. Also, they are widely used as pipes in oil pressure circuit. When we estimate their lifetime, it is essential to conduct an accelerated life test by choosing the factor that suits the usage condition of the test object since traditional test method for estimating lifetime under the influence of various external factors incurs hardship in terms of time and expenses. The objective of this study is to propose an acceleration model that takes both temperature and pressure without flexing condition into consideration. The lifetime is estimated by applying the proposed temperature-nonthermal acceleration model to the test data. And we compare the proposed temperature-nonthermal acceleration model and the accelerated life equation suggested by John(1994).

Large eddy simulation on the turbulent mixing phenomena in 3×3 bare tight lattice rod bundle using spectral element method

  • Ju, Haoran;Wang, Mingjun;Wang, Yingjie;Zhao, Minfu;Tian, Wenxi;Liu, Tiancai;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1945-1954
    • /
    • 2020
  • Subchannel code is one of the effective simulation tools for thermal-hydraulic analysis in nuclear reactor core. In order to reduce the computational cost and improve the calculation efficiency, empirical correlation of turbulent mixing coefficient is employed to calculate the lateral mixing velocity between adjacent subchannels. However, correlations utilized currently are often fitted from data achieved in central channel of fuel assembly, which would simply neglect the wall effects. In this paper, the CFD approach based on spectral element method is employed to predict turbulent mixing phenomena through gaps in 3 × 3 bare tight lattice rod bundle and investigate the flow pulsation through gaps in different positions. Re = 5000,10000,20500 and P/D = 1.03 and 1.06 have been covered in the simulation cases. With a well verified mesh, lateral velocities at gap center between corner channel and wall channel (W-Co), wall channel and wall channel (W-W), wall channel and center channel (W-C) as well as center channel and center channel (C-C) are collected and compared with each other. The obvious turbulent mixing distributions are presented in the different channels of rod bundle. The peak frequency values at W-Co channel could have about 40%-50% reduction comparing with the C-C channel value and the turbulent mixing coefficient β could decrease around 25%. corrections for β should be performed in subchannel code at wall channel and corner channel for a reasonable prediction result. A preliminary analysis on fluctuation at channel gap has also performed. Eddy cascade should be considered carefully in detailed analysis for fluctuating in rod bundle.

Development and verification of a Monte Carlo two-step method for lead-based fast reactor neutronics analysis

  • Yiwei Wu;Qufei Song;Ruixiang Wang;Yao Xiao;Hanyang Gu;Hui Guo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2112-2124
    • /
    • 2023
  • With the rise of economic and safety standards for nuclear reactors, new concepts of Gen-IV reactors and modular reactors showed more complex designs that challenge current tools for reactor physics analysis. A Monte Carlo (MC) two-step method was proposed in this work. This calculation scheme uses the continuous-energy MC method to generate multi-group cross-sections from heterogeneous models. The multi-group MC method, which can adapt locally-heterogeneous models, is used in the core calculation step. This calculation scheme is verified using a Gen-IV modular lead-based fast reactor (LFR) benchmark case. The influence of homogenized patterns, scatter approximations, flux separable approximation, and local heterogeneity in core calculation on simulation results are investigated. Results showed that the cross-sections generated using the 3D assembly model with a locally heterogeneous representation of control rods lead to an accurate estimation with less than 270 pcm bias in core reactivity, 0.5% bias in control rod worth, and 1.5% bias on power distribution. The study verified the applicability of multi-group cross-sections generated with the MC method for LFR analysis. The study also proved the feasibility of multi-group MC in core calculation with local heterogeneity, which saves 85% time compared to the continuous-energy MC.