• Title/Summary/Keyword: Power arc test

Search Result 122, Processing Time 0.028 seconds

Application of Guided Ultrasonic Wave Technology for Evaluation of Welding Part in Cooling Water Pipe (냉각수 배관 용접부 평가를 위한 유도초음파 기술의 적용)

  • Gil, D.S.;Ahn, Y.S.;Park, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.36-40
    • /
    • 2010
  • The ultrasonic guided wave propagates along with the given structure's wall direction. Because of this specific character, the ultrasonic guided waves arc used in many other fields. Especially, it can be readily utilized for nondestructive inspection of various structures that are made up of gas pipes, heat exchanger tubes, and thin plates. Further, the guided wave technology can be readily utilized when inspecting pipes or thin plates which pose high risk of the accident but for which the nondestructive inspection itself is impossible because it is difficult to get to them since they are coated or buried underground. In the other hand, conventional ultrasonic testing such as thickness gauging uses bulk waves and only tests the region of structure immediately below the transducer. As a result of the application about inlet and outlet cooling water line using guided wave test, we conformed that the overall corrosions were in the lower side of the 304.8 mm inlet valve and these corrosions were engaged in not locally but through the lower side of the valve line. In the near future, we can expect that the detectable defect size is smaller than before along with the development of the sensing technology.

Development of Contact System in 460[V]/225[A]/50[kA] Molded Case Circuit Breaker (460[V]/225[A]/50[kA] 한류형 배선용 차단기 소호부 개발)

  • 최영길;구태근;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.137-144
    • /
    • 2002
  • Low voltage circuit breakers which interrupt rapidly and raise the reliability of power supply are widely used in power distribution systems. In the paper, it has been investigated how much interrupting capability is improved by correcting the shape of the contact system in molded case circuit breaker(below MCCB), especially arc runner. Prior to the interrupting testing, it is necessary for the optimum design to analyze electromagnetic forces on the contact system generated by current and flux density. This paper presents both our computational analysis and test results on contact system in MCCB.

A Study of Moth-eye Nano Structure Embedded Optical Film with Mitigated Output Power Loss in PERC Photovoltaic Modules (PERC 태양전지 모듈의 출력저하 방지를 위한 모스아이(Moth-eye) 광학필름 연구)

  • Oh, Kyoung-suk;Park, Jiwon;Choi, Jin-Young;Chan, Sung-il
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.55-60
    • /
    • 2020
  • The PERC photovoltaic (PV) modules installed in PV power plant are still reports potential-induced degradation (PID) degradation due to high voltage potential differences. This is because Na+ ions in the cover glass of PV modules go through the encapsulant (EVA) and transferred to the surface of solar cells. As positive charges are accumulated at the ARC (SiOx/SiNx) interface where many defects are distributed, shunt-resistance (Rsh) is reduced. As a result, the leakage current is increased, and decrease in solar cell's power output. In this study, to prevent of this phenomenon, a Moth-eye nanostructure was deposited on the rear surface of an optical film using Nano-Imprint Lithography method, and a solar mini-module was constructed by inserting it between the cover glass and the EVA. To analyze the PID phenomenon, a cell-level PID acceleration test based on IEC 62804-1 standard was conducted. Also analyzed power output (Pmax), efficiency, and shunt resistance through Light I-V and Dark I-V. As a result, conventional solar cells were decreased by 6.3% from the initial efficiency of 19.76%, but the improved solar cells with the Moth-eye nanostructured optical film only decreased 0.6%, thereby preventing the PID phenomenon. As of Moth-eye nanostructured optical film, the transmittance was improved by 4%, and the solar module output was improved by 2.5%.

Study of microstructure of carbon-based materials in plasma wind tunnel testing

  • Kang, Bo-Ram;Lim, Hyeon-Mi;Oh, Phil-Yong;Hong, Bong Guen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.200.2-200.2
    • /
    • 2016
  • Carbon-based materials have been known as ablative material and have been used for thermal protection systems. Ablation is an erosive phenomenon that results in thermochemical and thermomechanical changes on materials. Ablation resistance is one of the key properties that determines performance and life-time of the thermal protection material under ablative conditions. In this study, ablation properties of graphite, 3-dimensional (C/C) composites (needle-punched type and rod type) were investigated byusing a plasma wind tunnel which produce a supersonic plasma flow from a segmented arc heater with the power level of 0.4 MW. The mass losses and surface roughness changes which contain main result of the ablation are measured. A morphological analysis ofthe carbon-based materials, before and after the ablation test, are performed through field emission scanning electron microscopy (FE-SEM) and non-contact 3D surface measuring system. Electronic balance and a portable surface roughness tester were used for evaluation of the recession and mass loss of the test samples.

  • PDF

The Study of Plasma Torch for Solid Waste Treatment (고상 廢棄物處理를 위한 플라즈마 토치에 관한 硏究)

  • Park, Hyun-Seo
    • Resources Recycling
    • /
    • v.14 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • A solid-state high power torch with inter-electrode insert (IEI) was developed to treat solid waste (for example, incinerated ash), and it's operation characteristics were obtained in the plasma facility test for waste treatment. According to torch test from this study, at the non-transferred mode voltage is increased by gas volume proportionally, and at the transferred mode it is not affected to voltage change. Especially arc voltage is sustained stable at the range of 10% of total Fe in slag. In addition, Electrical conductivity is 0.05~0.25${\Omega}^{-1}cm^{-1}$, torch efficiency is 75~85% and Erosion rate is 2${\times}10^{-6}~6{\times}10^{-6}$ kg/s.

COMPARISON OF LINEAR POLYMERIZATION SHRINKAGE IN COMPOSITES AND COMPOMER POLYMERIZED BY PLASMA ARC OR CONVENTIONAL VISIBLE LIGHT CURING (리노미터를 이용한 할로겐 가시광선 광조사기와 플라즈마 아크 광조사기의 복합레진 및 컴포머의 광중합 양상 비교)

  • Lee, Jae-Ik;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.5
    • /
    • pp.488-492
    • /
    • 2002
  • The purpose of this study was to evaluate the effectiveness of plasma arc curing (PAC) unit for composite and compomer curing. To compare its effectiveness with conventional quartz tungsten halogen (QTH) light curing unit, the polymerization shrinkage rates and amounts of three composites (Z100, Z250, Synergy Duo Shade) and one compomer, that had been light cured by PAC unit or QTH unit, was compared using a custome made linometer. The measurement of polymerization shrinkage was peformed after polymerization with either QTH unit or PAC unit. In case of curing with the PAC unit, the composite was light cured with Apollo 95E for 6s, the power density of which was recorded as 1350 mW/$\textrm{cm}^2$ by Coltolux Light Meter. For light curing with QTH unit, the composite was light cured for 30s with the XL2500, the power density of which was recorded as 800 mW/$\textrm{cm}^2$ by Coltolux Light Meter. The amount of linear polymerization shrinkage was recorded in the computer every 0.5s for 60s. Ten measurements were made for each material. The amount of linear polymerization shrinkage for each material in 10s and 60s which were cured with PAC or QTH unit were compared with t test. The amount of polymerization shrinkage in the tested materials were compared with 1way ANOVA with Duncan's multiple range test. As for the amounts of polymerization shrinkage in 60s, there was no difference between PAC unit and QTH unit in Z250 and Synergy Duo Shade. In Z100 and Dyract AP, it was lower when it was cured with PAC unit than when it was cured with QTH unit (p<0.05). As for the amounts of polymerization shrinkage in 10s, there was no difference between PAC unit and QTH unit in Z100 and Dyract AP. The amounts of polymerization shrinkage was significantly higher when it was cured with PAC unit in Z250 and Synergy Duo Shade (p<0.05). The amounts of polymerization shrinkage in the tested materials when they were cured with QTH unit were Z250 (6.6um) < Z100 (9.3um), Dyract AP (9.7um) < Synergy Duo Shade (11.2um) (p<0.05). The amount of polymerization shrinkage when the materials were cured with PAC unit were Dyract AP (5.6um) < Z100 (8.1um), Z250(7.0um) < Synergy Duo Shade (11.2um) (p<0.05).

Parameter Study of Impact Characteristics for a Vacuum Interrupter Considering Dynamic Material Properties (동적 물성치를 고려한 진공 인터럽터 충격특성의 영향인자 분석)

  • Lim, Ji-Ho;Song, Jeong-Han;Huh, Hoon;Park, Woo-Jin;Oh, Il-Seong;Ahn, Gil-Young;Choe, Jong-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.924-931
    • /
    • 2002
  • Vacuum interrupters in order to be used in various switch-gear components such as circuit breakers, distribution switches, contactors, etc. spread the arc uniformly over the surface of the contacts. The electrodes of vacuum interrupters are made of sinter-forged Cu-Cr materials for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

반타원 표면균열의 피로성장 거동에 관한 연구

  • 최용식;양원호;방시항
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.916-922
    • /
    • 1986
  • This paper presents the preliminary results of an experimental study on surface crack growth under fatigue loadings. The objective of this paper is to assess the effect of the initial crack size on crack propagation behaviors. Transparent PMMA plate speciments with shallow circular arc notch were used. Crack growth behaviors were observed and measured in two directions by travelling microscopes. The fatigue crack initiated at the deepest part on the initial arc shaped notch and then propagated to depth direction as well as spreading gradually along the notch tip. A considerable number of cycles was needed until the depth crack spreaded to the surface notch tip. When the fatigue crack reached the surface notch tip the crack front became an approximate semi-ellipse, primary semi-elliptical crack. Test results suggest that the relationships between fatigue crack growth rate and stress intensity factor range in both directions can be expressed by power law (Paris) and that relationship in width direction depends upon the crack ratios a$_{1}$/b$_{1}$, of the primary semi-elliptical crack. The relationship between the nondimensional crack lengths in both directions can be represented as the formula: (a/t)$^{n}$ =B(2b/W+A) where n and A are constants and B is seems to be depended upon the crack ratio a$_{1}$/b$_{1}$.

A Study of Corona Discharge in Polymer Insulators by Artificial UV Radiation (인위적인 자외선 조사량에 따른 폴리머애자에서의 코로나 방전 특성)

  • Kim, Y.S.;Choi, M.I.;Kim, C.M.;Bang, S.B.;Shong, K.M.;Kwag, D.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.643-648
    • /
    • 2013
  • In this study, degradation was observed by irradiating UV rays to the polymer insulators which have been widely used in outdoor electric power facilities. For an indoor accelerated UV test, 0.55 w/m2 of UV rays were applied using a xenon-arc method. A UV detection system with 65 ${\phi}mm$ in diameter, 100 mm in length and 1.0 of brightness (F/#) has been designed. Even though efflorescence on the surface of polymer insulators wasn't observed according to the accelerated UV test. UV rays were detected at around 50% and 40% of insulation breakdown in EPDM and silicone-type insulators respectively. As degradation continued because of an indoor accelerated UV test, breakdown voltage with which UV rays can be detected in an early stage decreased as well. A silicone polymer insulator would be severer than EPDM polymer insulator in terms of surface degradation because of UV strength against $V_m/V_{BD}$ was high in silicone polymer insulators. UV strength in silicone-type insulators increased at 1,000 $kJ/m^2$ because contact angle at the intial stage sharply decreased to from $113^{\circ}$ to $92.1^{\circ}$.

A Possible diagnostic method of cable system using SI-PD measurement (충격파-부분방전(SI-PD) 시험방법을 이용한 케이블 진단에 관한 기초 연구)

  • Kim, J.T.;Koo, J.Y.;Jang, E.;Cho, Y.O.;Kim, S.J.;Song, I.K.;Kim, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1774-1777
    • /
    • 1996
  • In this paper, applicability of SI-PD(switching impulse - partial discharge) testing method was put on an attempt as a newly proposed diagnostic method for the underground distribution power cable system in Korea. For this purpose, SI-PD testing equipment was designed, and tests were performed using artificial needle-type defects integrated into the 22.9 kV CN/CV cables in drder to prove its reliability. As a result, arc noises, generated from spark gap, were considerably decreased by use of a pneumatic switch immersed into oil, and artificial needle-type defects were well detected with impulse voltage level under $2U_0$. These results imply that it is likely possible to apply SI-PD measurement method as a the nondistructive test for the 22.9 kV CN/CV cable system in Korea.

  • PDF