• 제목/요약/키워드: Power and Rate Allocation

검색결과 247건 처리시간 0.024초

Minimum BER Power Allocation for OFDM-based Cognitive Radio Networks

  • Xu, Ding;Li, Qun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2338-2353
    • /
    • 2015
  • In this paper, the optimal power allocation algorithm that minimizes the aggregate bit error rate (BER) of the secondary user (SU) in a downlink orthogonal frequency division multiplexing (OFDM) based cognitive radio (CR) system, while subjecting to the interference power constraint and the transmit power constraint, is investigated under the assumption that the instantaneous channel state information (CSI) of the interference links between the secondary transmitter and the primary receiver, and between the primary transmitter and the secondary receiver is perfectly known. Besides, a suboptimal algorithm with less complexity is also proposed. In order to deal with more practical situations, we further assume that only the channel distribution information (CDI) of the interference links is available and propose heuristic power allocation algorithms based on bisection search method to minimize the aggregate BER under the interference outage constraint and the transmit power constraint. Simulation results are presented to verify the effectiveness of the proposed algorithms.

Energy Efficient Transmit and Receive Strategy for Green Communications: K users extension

  • Oh, Changyoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권10호
    • /
    • pp.37-42
    • /
    • 2016
  • We investigate multi user joint rate scheduling and power allocation problem for a delay sensitive CDMA systems. First, we characterize the existing two user joint rate scheduling and power allocation. We then extend the problem to the case of the multi user systems. In general, there is no simple optimum solution for the multi user scheduling problem. To that end, we propose a sub optimum solution, termed 'virtual user approach'. We show the performance of the virtual user approach to verify the benefit of complexity.

Joint wireless and computational resource allocation for ultra-dense mobile-edge computing networks

  • Liu, Junyi;Huang, Hongbing;Zhong, Yijun;He, Jiale;Huang, Tiancong;Xiao, Qian;Jiang, Weiheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3134-3155
    • /
    • 2020
  • In this paper, we study the joint radio and computational resource allocation in the ultra-dense mobile-edge computing networks. In which, the scenario which including both computation offloading and communication service is discussed. That is, some mobile users ask for computation offloading, while the others ask for communication with the minimum communication rate requirements. We formulate the problem as a joint channel assignment, power control and computational resource allocation to minimize the offloading cost of computing offloading, with the precondition that the transmission rate of communication nodes are satisfied. Since the formulated problem is a mixed-integer nonlinear programming (MINLP), which is NP-hard. By leveraging the particular mathematical structure of the problem, i.e., the computational resource allocation variable is independent with other variables in the objective function and constraints, and then the original problem is decomposed into a computational resource allocation subproblem and a joint channel assignment and power allocation subproblem. Since the former is a convex programming, the KKT (Karush-Kuhn-Tucker) conditions can be used to find the closed optimal solution. For the latter, which is still NP-hard, is further decomposed into two subproblems, i.e., the power allocation and the channel assignment, to optimize alternatively. Finally, two heuristic algorithms are proposed, i.e., the Co-channel Equal Power allocation algorithm (CEP) and the Enhanced CEP (ECEP) algorithm to obtain the suboptimal solutions. Numerical results are presented at last to verify the performance of the proposed algorithms.

A Framework of Rate Control and Power Allocation in Multipath Lossy Wireless Networks

  • Radwan, Amr;Kim, Hoon
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1404-1414
    • /
    • 2016
  • Cross-layer design is a concept, which captures the dependencies and interactions and enables information sharing among layers in order to improve the network performance and security. There are two key challenges in wireless networks, lossy features of links and power assumption of network nodes. Cross-layer design of congestion control and power allocation in wireless lossy networks has been studied in the existing literature; however, there has been no contribution proposed in the literature that exploits the path diversity. In this paper, we are motivated to develop a cross-layer design of congestion control and power allocation, which takes into account lossy features of wireless links and transmission powers of network nodes and can be implemented in a distributed manner. Numerical simulation is conducted to illustrate the performance of our proposed algorithm and the comparison with current alternative approaches.

다중 안테나 공간 다중화 릴레이 시스템을 위한 근사 최소 비트 오율 전력 할당 방법 (Approximate Minimum BER Power Allocation of MIMO Spatial Multiplexing Relay Systems)

  • 황규호;최수용
    • 한국통신학회논문지
    • /
    • 제36권4A호
    • /
    • pp.337-344
    • /
    • 2011
  • 본 논문은 모든 노드가 다중 안테나를 갖는 다중 안테나 (MIMO, multiple-input and multiple-output) 공간 다중화 (SM, spatial multiplexing) 릴레이 시스템을 비트 오율 (BER, bit error rate) 관점에서 연구한다. 제한된 전력 자원을 효율적으로 이용하기 위해서는 각 노드와 안테나에서 최적화된 전력 할당 전략이 필요하다. 본 논문은 이런 관점에서 다중 안테나 공간 다중화 릴레이 시스템을 위한 비트 오율 최소화에 기반을 둔 전력 할당 알고리즘을 제안한다. 제안된 알고리즘은 평균 비트 오율을 직접 최소화하여 얻어지며, 노드 간 (inter-node) 전력 할당 알고리즘과 안테나 간 (inter-antenna) 전력 할당 알고리즘으로 구성된다. 비트 오율 성능에 있어서, 기존의 균등 전력 할당 (EPA, equal power allocation) 알고리즘보다 추가적인 전력 소비 없이도 월등한 성능을 보인다.

Power allocation for full-duplex NOMA relaying based underlay D2D communications

  • Li, Song;Li, Shuo;Sun, Yanjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.16-33
    • /
    • 2019
  • In this paper, a full-duplex NOMA relaying based underlay device-to-device (D2D) communication scheme is proposed, in which D2D transmitter assists cellular downlink transmission as a full-duplex relay. Specifically, D2D transmitter receives signals from base station and transmits the superposition signals to D2D receiver and cellular user in NOMA scheme simultaneously. Furthermore, we investigate the power allocation under the proposed scheme, aiming to maximize D2D link's achievable transmit rate under cellular link's transmit rate constraint and total power constraint. To tackle the power allocation problem, we first propose a power allocation method based on linear fractional programming. In addition, we derive closed-form expressions of the optimal transmit power for base station and D2D transmitter. Simulation results show that the performance of two solutions matches well and the proposed full-duplex NOMA relaying based underlay D2D communication scheme outperforms existing full-duplex relaying based D2D communication scheme.

Large-Scale Joint Rate and Power Allocation Algorithm Combined with Admission Control in Cognitive Radio Networks

  • Shin, Woo-Jin;Park, Kyoung-Youp;Kim, Dong-In;Kwon, Jang-Woo
    • Journal of Communications and Networks
    • /
    • 제11권2호
    • /
    • pp.157-165
    • /
    • 2009
  • In this paper, we investigate a dynamic spectrum sharing problem for the centralized uplink cognitive radio networks using orthogonal frequency division multiple access. We formulate a large-scale joint rate and power allocation as an optimization problem under quality of service constraint for secondary users and interference constraint for primary users. We also suggest admission control to nd a feasible solution to the optimization problem. To implement the resource allocation on a large-scale, we introduce a notion of using the conservative factors $\alpha$ and $\beta$ depending on the outage and violation probabilities. Since estimating instantaneous channel gains is costly and requires high complexity, the proposed algorithm pursues a practical and implementation-friendly resource allocation. Simulation results demonstrate that the large-scale joint rate and power allocation incurs a slight loss in system throughput over the instantaneous one, but it achieves lower complexity with less sensitivity to variations in shadowing statistics.

간섭이 존재하는 비직교 다중접속 시스템에서 데이터 전송률 공정성 개선을 위한 전력 할당 기법 (Power Allocation Scheme to Enhance Data-Rate Fairness for Non-orthogonal Multiple Access Systems in the Presence of Interference)

  • 이인호
    • 한국정보통신학회논문지
    • /
    • 제23권11호
    • /
    • pp.1407-1413
    • /
    • 2019
  • 본 논문에서는 비직교 다중접속 시스템의 주파수 효율성 최대화를 위하여 다른 송신기가 동일한 주파수 대역에서 신호를 전송할 수 있다고 가정한다. 그리고 비직교 다중접속 시스템의 총 데이터 전송률의 최대화가 아닌 수신기의 데이터 전송률의 공정성 성능 개선에 집중한다. 따라서 본 논문에서는 간섭이 존재하는 비직교 다중접속 시스템을 고려하여 수신기의 평균 데이터 전송률에 대한 공정성 성능을 개선하기 위한 전력 할당 기법을 제안한다. 레일레이 페이딩 채널을 가정하여 수신기의 평균 데이터 전송률을 정의하고, 높은 신호 대 잡음비의 근사법을 이용하여 평균 데이터 전송률의 공정성 성능을 개선하기 위한 전력 할당 계수를 유도한다. 또한, 시뮬레이션을 통해 제안하는 전력 할당 기법이 간섭을 갖는 비직교 다중접속 시스템에서 데이터 전송률의 공정성 성능을 개선할 수 있음을 보인다.

A Relay Selection and Power Allocation Scheme for Cooperative Wireless Sensor Networks

  • Qian, Mujun;Liu, Chen;Fu, Youhua;Zhu, Weiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1390-1405
    • /
    • 2014
  • This paper investigates optimal relay selection and power allocation under an aggregate power constraint for cooperative wireless sensor networks assisted by amplify-and-forward relay nodes. By considering both transmission power and circuit power consumptions, the received signal-to-noise ratio (SNR) at the destination node is calculated, based on which, a relay selection and power allocation scheme is developed. The core idea is to adaptively adjust the selected relays and their transmission power to maximize the received SNR according to the channel state information. The proposed scheme is derived by recasting the optimization problem into a three-layered problem-determining the number of relays to be activated, selecting the active relays, and performing power allocation among the selected relays. Monte Carlo simulation results demonstrate that the proposed scheme provides a higher received SNR and a lower bit error rate as compared to the average power allocation scheme.

ZF-THP를 이용한 다중 안테나 다중 사용자 시스템에서 전송률 합 최적화를 위한 전력 할당 알고리즘 (Power Allocation Algorithms for ZF-THP Sum Rate Optimization in Multi-user Multi-antenna Systems)

  • 이욱봉;송창익;이상림;이길봄;곽진삼;이인규
    • 한국통신학회논문지
    • /
    • 제37A권9호
    • /
    • pp.753-761
    • /
    • 2012
  • 이 논문에서 우리는 Tomlinson-Harashima precoding (THP)를 이용한 다중 입력 단일 출력 다중 사용자 하향링크 시스템을 위한 전력할당 기법에 대해 알아본다. Zero-forcing THP 시스템의 sum rate를 최대화하기 위해 우리는 이전 방법과는 달리 mutual information 방법을 적용하였다. 나아가서, 모듈로 오퍼레이션을 사용하는 유저에 적절한 전력 레벨을 할당하기 위해 간단한 전력 할당 알고리즘을 제안한다. 실험 결과는 제안된 기법이 기존의 water-filling 기법보다 성능이 우수하고, 시스템의 최적의 성능을 내는 기법과 성능은 유사하면서 보다 작은 복잡도로 이루는 것을 보여준다.