• Title/Summary/Keyword: Power analysis attack

Search Result 212, Processing Time 0.028 seconds

The Effect of Hydraulic Efficiency on the Design Variables of an Overtopping Wave Energy Converter (월파수류형 파력발전구조물의 상부 사면 설계변수에 따른 수력학적 효율 영향 연구)

  • An, Sung-Hwan;Kim, Geun-Gon;Lee, Jong-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.168-174
    • /
    • 2022
  • In a wave power generation system, the overtopping system is known as an overtopping wave energy converter (OWEC). The performance of an OWEC is affected by wave characteristics such as height and period because its power generation system is sensitive to those characteristics; these, as well as wave direction, depend on the sea. As these characteristics vary, it is hard for the OWEC to produce power in a stable manner. Therefore, it is necessary to find an appropriate shape for an OWEC, according to the characteristics of the sea it is in. This research verified the effect of the design of the OWEC ramp on the hydraulic efficiency using the smoothed particle hydrodynamics (SPH) particle method. A total of 10 models were designed and used in simulations performed by selecting the design parameters of the ramp and changing the attack angle based on those parameters. The hydraulic efficiency was calculated based on the rate of discharged water obtained from the analysis result. The effect of each variable on the overtopping performance according to the shape of the ramp was then confirmed. In this study, we present suggestions for determining the direction for an appropriately shaped OWEC ramp, based on a specific sea area.

Numerical Analysis of Stall Characteristics for Turboprop Aircraft (터보프롭 항공기의 실속 특성 수치해석)

  • Park, Young Min;Chung, Jin Deog
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • Numerical simulations were performed to study the stall characteristics of turboprop aircraft. Stall characteristics were qualitatively investigated using the computational results of various configurations based on the combinations of propeller and high lift device. For the analysis of stall characteristics, three-dimensional Navier-Stokes solver with Spalart-Allmaras turbulence model was used and the relative motion between propeller and wing was simulated using sliding mesh technique. For the cruise configurations, major flow separation was occurred at the fuselage/wing fairing and the separation was reduced under propeller slipstream condition. For the high lift device configuration without propeller, major flow separation was occurred at the outboard side of nacelle. With rotating propeller, early stall onset due to low relative velocity and high effective angle of attack was observed on the outboard wing section. Regarding rotating direction of propeller, inboard-down direction was preferred due to the stall delay effect of propeller slipstream.

Numerical Analysis of Deformation Characteristics in the Double-Layer Liner According to Explosive Material Distribution (이중층 라이너에서 폭발 재료 분포에 따른 변형 특성 수치해석)

  • Mun, Sang Ho;Kim, See Jo;Lee, Chang Hee;Lee, Seong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.618-628
    • /
    • 2016
  • The development of new concepts of liners is required in order to effectively neutralize the enemy's attack power concealed in the armored vehicles. A multiple-layer liner is one of possibilities and has a mechanism for explosion after penetrating the target which is known as "Behind Armor Effect." The multiple-layer explosive liner should have sufficient kinetic energy to penetrate the protective structure and explosive material react after target penetration. With this in mind, double-layer liner materials were obtained by cold spray coating methods and these material properties were experimentally characterized and used in this simulation for double-layer liners. In this study, numerical simulations in the three different layer types, i.e., single, A/B, A/B/A in terms of the layer location were verified in terms of finite element mesh sizes and numerical results for the jet tip velocity, kinetic energy, and the corresponding jet deformation characteristics were analysed in detail depending on the structure of layer types.

A Vulnerability Analysis of Intrusion Tolerance System using Self-healing Mechanism (자가치유 메커니즘을 활용한 침입감내시스템의 취약성 분석)

  • Park, Bum-Joo;Park, Kie-Jin;Kim, Sung-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.7
    • /
    • pp.333-340
    • /
    • 2005
  • One of the most important core technologies required for the design of the ITS (Intrusion Tolerance System) that performs continuously minimal essential services even when the network-based computer system is partially compromised because of the external or internal intrusions is the quantitative dependability analysis of the ITS. In this paper, we applied self-healing mechanism, the core technology of autonomic computing to secure the protection power of the ITS. We analyzed a state transition diagram of the ITS composed of a Primary server and a backup server utilizing two factors of self-healing mechanism (fault model and system response) and calculated the availability of ITS through simulation experiments and also performed studies on two cases of vulnerability attack.

Observational analysis of wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015)

  • Lin Xue;Ying Li;Lili Song
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.315-329
    • /
    • 2023
  • We investigated the wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015) based on observations from wind towers in the coastal areas of Guandong province. Typhoon Mujigae made landfall in this region from 01:00 UTC to 10:00 UTC on October 4, 2015. In the region influenced by the eyewall of the tropical cyclone, the horizontal wind speed was characterized by a double peak, the wind direction changed by >180°, the vertical wind speed increased by three to four times, and the angle of attack increased significantly to a maximum of 7°, exceeding the recommended values in current design criteria. The vertical wind profile may not conform to a power law distribution in the near-surface layer in the region impacted by the eyewall and spiral rainband. The gust factors were relatively dispersed when the horizontal wind speed was small and tended to a smaller value and became more stable with an increase in the horizontal wind speed. The variation in the gust factors was the combined result of the height, wind direction, and circulation systems of the tropical cyclone. The turbulence intensity and the downwind turbulence energy spectrum both increased notably in the eyewall and spiral rainband and no longer satisfied the assumption of isotropy in the inertial subrange and the -5/3 law. This result was more significant in the eyewall area than in the spiral rainband. These results provide a reference for forecasting tropical cyclones, wind-resistant design, and hazard prevention in coastal areas of China to reduce the damage caused by high winds induced by tropical cyclones.

Analysis of the Chinese Navy's Offensive Strategy for the West Sea and the Development Direction of the Korean Navy's Response Strategy (중국해군의 공세적 서해(西海) 진출 전략 분석과 한국해군의 대응전략 발전방향)

  • Kim, Nam-su
    • Maritime Security
    • /
    • v.6 no.1
    • /
    • pp.1-35
    • /
    • 2023
  • The purpose of this study is to present the direction of development of our navy's response strategy through analysis at the ends, ways, and means level of the Chinese navy's offensive strategy for the West Sea. As a result of the analysis, at the ends level, the Chinese Navy's offensive strategy for the West Sea strategy is being linked to a grand strategy to protect maritime rights and achieve maritime power between the U.S. and China competition, at the ways level, the Chinese Navy is expected to create a foundation for the international community to recognize the West Sea as China's inland sea through "routine entry" and "exercise authority", and in case of emergency, it will try to secure sea control in the West Sea in a short period of time by blocking Korea's maritime transportation route based on the overwhelming preemptive attack capability of aircraft carriers. At the means level, it is accelerating the construction of aircraft carrier warfare units and improving its ability to engage long-range missiles. As a direction of development of the Korean Navy's response strategy in response to this, first, Establishment and Development of National Maritime Security Strategy in conjunction with the Korean Indo-Pacific Strategy. Second, it proposes the development of the concept of effective security operations for the east sea area of the West Sea intermediate line, and third, the development of the concept of combat performance and capacity building to strengthen survival and lethality.

  • PDF

Loop Probe Design and Measurement of Electromagnetic Wave Signal for Contactless Cryptographic Analysis (비접촉 암호 분석용 루프 프로브 설계 및 전자파 신호 측정)

  • Choi, Jong-Kyun;Kim, Che-Young;Park, Jea-Hoon;Moon, Snag-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1117-1125
    • /
    • 2007
  • In this paper, a study has been performed on the design of small loop probe and analysis of induced electromagnetic wave signal from a smartcard for contactless cryptographic analysis. Probes for cryptographic analysis are different from conventional EM probes, because the purpose of proposed probe is to obtain the information for secret key analysis of cryptographic system. The waveform of induced voltage on probe must be very close to radiated waveform from IC chip on smartcard because electromagnetic attack makes an attempt to analyze the radiated waveform from smartcard. In order to obtain secret key information, we need to study about cryptographic analysis using electromagnetic waves, an approximate model of source, characteristic of probe for cryptographic analysis, measurement of electromagnetic waves and calibration of probes. We measured power consumption signal on a smartcard chip and electromagnetic wave signal using proposed probe and compared with two signals of EMA point of view. We verified experimently the suitability of the proposed small loop probe for contactless cryptographic analysis by applying ARIA algorithm.

A Study on The Art of War's strategy and its modern application (손자병법의 전략과 그 현대적 응용에 관한 연구)

  • Song, Yong-ho;Jun, Myung-yong
    • (The)Study of the Eastern Classic
    • /
    • no.73
    • /
    • pp.249-279
    • /
    • 2018
  • This paper analyzes the 'strategy' of Sunzi's art of war and verifies the modern application value of it by combining the 'strategy' of the art of war with modern enterprise management. The army adopts 'war strategy' with the aim of minimizing the loss and sacrifice caused by the war and winning in the shortest time. Enterprise aims to maximize profits at the lowest cost and adopt 'business strategy'. Three factors of art of war's strategic, the 'power', 'adaptation', 'trickery', are similar to the 'internal resources analysis', 'external environment analysis' and 'information management' of the modern enterprise's management. In the process of establishing strategic plan, the art of war emphasizes 'strategy of winning' including 'prophet', 'estimates' and 'maneuvering', in the modern enterprise management, 'prophet' is shown as 'competitor analysis' of the '3C analysis' and 'benchmarking learning'. 'Estimates' is shown as 'SWOT analysis' and '4P's analysis'. 'Maneuvering' is shown as 'market positioning strategy' and 'market preemption strategy'. In the stage of implementing the strategy, 'surprise attack strategy', 'strategy of void and actuality' and 'dividing and integrating strategy' of the art of war are shown as follows in modern enterprises ; 'Surprise attack strategy' is shown as 'differentiation strategy' and 'concentration strategy', 'Strategy of void and actuality' is shown as 'information management' and 'rational market positioning strategy'. 'Dividing and integrating strategy' is shown 'diversification strategy', 'concentration strategy', 'change management', 'basic competition strategy', 'synergy effect' and etc. In terms of strategic results, the 'victory of war' of the art or war is shown as 'competitive advantage' and 'maximization of profits' in modern enterprise management strategy. In a word, although there are different names and expressions between the strategy of Sunzi's art of war and modern enterprise, but their connotation is the same. We can see that the art of war which was written in about B.C.500, has left a high utilization value for modern enterprise in rapid environmental change and intense competition.

A small-area implementation of cryptographic processor for 233-bit elliptic curves over binary field (233-비트 이진체 타원곡선을 지원하는 암호 프로세서의 저면적 구현)

  • Park, Byung-Gwan;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1267-1275
    • /
    • 2017
  • This paper describes a design of cryptographic processor supporting 233-bit elliptic curves over binary field defined by NIST. Scalar point multiplication that is core arithmetic in elliptic curve cryptography(ECC) was implemented by adopting modified Montgomery ladder algorithm, making it robust against simple power analysis attack. Point addition and point doubling operations on elliptic curve were implemented by finite field multiplication, squaring, and division operations over $GF(2^{233})$, which is based on affine coordinates. Finite field multiplier and divider were implemented by applying shift-and-add algorithm and extended Euclidean algorithm, respectively, resulting in reduced gate counts. The ECC processor was verified by FPGA implementation using Virtex5 device. The ECC processor synthesized using a 0.18 um CMOS cell library occupies 49,271 gate equivalents (GEs), and the estimated maximum clock frequency is 345 MHz. One scalar point multiplication takes 490,699 clock cycles, and the computation time is 1.4 msec at the maximum clock frequency.

Numerical Study on the Side-Wind Aerodynamic Forces of Chambered 3-D Thin-Plate Rigid-Body Model (캠버가 있는 3차원 박판 강체 모형의 측풍 공기력에 대한 수치 연구)

  • Shin, Jong-Hyeon;Chang, Se-Myong;Moon, Byung-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.97-108
    • /
    • 2015
  • In the design of sailing yachts, para-glider, or high-sky wind power, etc., the analysis of side-wind aerodynamic forces exerted on a cambered 3-D model is very important to predict the performance of various machinery systems. To understand the essential flow physics around the three-dimensional shape, simplified rigid-body models are proposed in this study. Four parameters such as free stream velocity, angle of attack, aspect ratio, and camber are considered as the independent variables. Lift and drag coefficients are computed with CFD technique using ANSYS-CFX, and the results with the visualization of post-processed flow fields are analyzed in the viewpoint of fluid dynamics.