• Title/Summary/Keyword: Power Transmission Systems

Search Result 1,405, Processing Time 0.035 seconds

Improvement of Digital Distance Relaying Algorithm Using Wavelet Transform in Combined Transmission Line (웨이브렛을 이용한 혼합송전선로에서의 거리계전 알고리즘 개선)

  • 정채균;김경호;하체웅;이종범;윤양웅
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.593-601
    • /
    • 2003
  • Distance realy is tripped by the line impedance calculated at the relay point. Accordingly the accurate operation depends on the precise calculation of line impedance. Impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, impedance can not be accurately calculated because cable systems have the sheath, grounding resistance, and sheath voltage limiters(SVLs). There are also several grounding systems in cable systems. Therefore, if there is a fault in cable systems, these terms will severely be caused much error to calculation of impedance. Accordingly the proper compensation should be developed for the correct operation of the distance relay. This paper presents the distance calculating algorithm in combined transmission line with power cable using wavelet transform. In order to achieve such purpose, judgement method to discriminate the fault section in both sections was proposed using D1 coefficient summation in db4. And also, error compensation value was proposed for correct calculation of impedance in power cables section.

A Study on the Sequence Impedance Modeling of Underground Transmission Systems (지중송전선로의 대칭분 임피던스 모델링에 관한 연구)

  • Hwang, Young-Rok;Kim, Kyung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.60-67
    • /
    • 2014
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. The majority of fault in transmission lines is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and ground wires in overhead transmission systems and through cable sheaths and earth in underground transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, EMTP-based sequence impedance calculation method was described and applied to 345kV cable transmission systems. Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

Power Loss and Junction Temperature Analysis in the Modular Multilevel Converters for HVDC Transmission Systems

  • Wang, Haitian;Tang, Guangfu;He, Zhiyuan;Cao, Junzheng
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.685-694
    • /
    • 2015
  • The power loss of the controllable switches in modular multilevel converter (MMC) HVDC transmission systems is an important factor, which can determine the design of the operating junction temperatures. Due to the dc current component, the approximate calculation tool provided by the manufacturer of the switches cannot be used for the losses of the switches in the MMC. Based on the enabled probabilities of each SM in an arm, the current analytical models of the switches can be determined. The average and RMS currents can be obtained from the corresponding current analytical model. Then, the conduction losses can be calculated, and the switching losses of the switches can be estimated according to the upper limit of the switching frequency. Finally, the thermal resistance model of the switches can be utilized, and the junction temperatures can be estimated. A comparison between the calculation and PSCAD simulation results shows that the proposed method is effective for estimating the junction temperatures of the switches in the MMC.

Sum Transmission Rate Maximization Based Cooperative Spectrum Sharing with Both Primary and Secondary QoS-Guarantee

  • Lu, Weidang;Zhu, Yufei;Wang, Mengyun;Peng, Hong;Liu, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2015-2028
    • /
    • 2016
  • In this paper, we propose a sum transmission rate maximization based cooperative spectrum sharing protocol with quality-of-service (QoS) support for both of the primary and secondary systems, which exploits the situation when the primary system experiences a weak channel. The secondary transmitter STb which provides the best performance for the primary and secondary systems is selected to forward the primary signal. Specifically, STb helps the primary system achieve the target rate by using a fraction of its power to forward the primary signal. As a reward, it can gain spectrum access by using the remaining power to transmit its own signal. We study the secondary user selection and optimal power allocation such that the sum transmission rate of primary and secondary systems is maximized, while the QoS of both primary and secondary systems can be guaranteed. Simulation results demonstrate the efficiency of the proposed spectrum sharing protocol and its benefit to both primary and secondary systems.

A Fast Optimization Algorithm for Optimal Real Power Flow (고속의 유효전력 최적조류계산 알고리즘)

  • Song, Kyung-Bin;Kim, Hong-Rae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.926-928
    • /
    • 1998
  • A fast optimization algorithm has been evolved from a simple two stage optimal power flow(OPF) algorithm for constrained power economic dispatch. In the proposed algorithm, we consider various constraints such as power balance, generation capacity, transmission line capacity, transmission losses, security equality, and security inequality constraints. The proposed algorithm consists of four stages. At the first stage, we solve the aggregated problem that is the crude classical economic dispatch problem without considering transmission losses. An initial solution is obtained by the aggregation concept in which the solution satisfies the power balance equations and generation capacity constraints. Then, after load flow analysis, the transmission losses of an initial generation setting are matched by the slack bus generator that produces power with the cheapest cost. At the second stage we consider transmission losses. Formulation of the second stage becomes classical economic dispatch problem involving the transmission losses, which are distributed to all generators. Once a feasible solution is obtained from the second stage, transmission capacity and other violations are checked and corrected locally and quickly at the third stage. The fourth stage fine tunes the solution of the third stage to reach a real minimum. The proposed approach speeds up the coupled LP based OPF method to an average gain of 53.13 for IEEE 30, 57, and 118 bus systems and EPRI Scenario systems A through D testings.

  • PDF

The Analysis Results of Lightning Overvoltages by EMTP for Lightning Protection Design of 500kV Substations

  • Ju Hyung-Jun;Lee Heung-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.366-370
    • /
    • 2005
  • To meet increasing power demand, 500 kV power systems are under consideration in the regions of some Middle Asian countries. As the power system voltage becomes higher, the cost for the power system insulation increases significantly. 500 kV transmission systems will become the basis of a region's power system and they require much higher system reliability. Consequently, by the methods of limiting overvoltages effectively, a reasonable insulation design and coordination must be accomplished. In particular, the Substations must be constructed to be of outdoor type. In order to determine the various factors for the insulation design, the EMTP (Electro-magnetic transient program) is used for the magnification of transient phenomena of the 500 kV systems in the planned network. In this paper, we will explain the calculation results of lightning overvoltages by the EMTP for lightning protection design for the 500 kV substations. To obtain reliable results, the multi-story tower model and EMTP/TACS model are introduced for the simulation of dynamic arc characteristics.

Design of Pulse Shaping Filter for High-Speed Service in Digital Satellite Broadcasting System (디지털 위성방송 시스템의 고속 서비스를 위한 Pulse Shaping Filter 설계)

  • 오재현;이인섭;이완범;강정용;박형근;김환용
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.337-340
    • /
    • 2002
  • In data transmission at the digital satellite broadcasting systems, the delay and spread are caused whit receiving original signals from the transmitter in the receiver. So, there are some problems in data fast transmission. Also, transmitted signals ate received in stale of the combination of transmission delay and noise of channel. The affect of channel noise is reduced when increasing transmission power, but as signal interference due to the transmission delay and spread of channel increase in proportion to the transmission power, there is a problem in spite of increasing the transmission power. And there is the problem to add ISI(inter symbol interference) because the property of the channel is limo-varying due to relative moving in the transceiver Therefore, in this paper, a pulse shaping filter for the high-speed service in digital satellite broadcasting systems was designed and reduced the ISI.

  • PDF

A Study on Overvoltage Reduction Method of Single Point Bonded Section on Combined Transmission Lines (혼합송전선로 편단접지 구간 과전압 저감 방안에 관한 연구)

  • Jung, Chae-Kyun;Kang, Ji-Won;Park, Hung-Sok;Kim, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1881-1887
    • /
    • 2009
  • This paper discusses the effects of ECC (Earth Continuity Conductor) for reducing the level of induced sheath overvoltages at the single point bonded section of combined transmission lines which are mixed underground power cable with overhead line in one T/L. In previous papers, the characteristics of ECC on only underground power cable systems were sufficiently analyzed. However, the result of only underground power cable systems are totally different from that of combined transmission lines because ECC is commonly grounded with overhead grounding wire at mesh of cable head. Therefore, in this paper, the installation effects of ECC have been variously analyzed considering the three kinds of fault positions, cable formation of duct and trefoil, spacing between phase conductor and ECC, and the change of overhead transmission line section length on 154kV combined transmission line. Finally, simulation results show that ECC can effectively reduce the induced sheath voltage.

An Improved Dynamic Programming Approach to Economic Power Dispatch with Generator Constraints and Transmission Losses

  • Balamurugan, R.;Subramanian, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.320-330
    • /
    • 2008
  • This paper presents an improved dynamic programming (IDP) approach to solve the economic power dispatch problem including transmission losses in power systems. A detailed mathematical derivation of recursive dynamic programming approach for the economic power dispatch problem with transmission losses is presented. The transmission losses are augmented with the objective function using price factor. The generalized expression for optimal scheduling of thermal generating units derived in this article can be implemented for the solution of the economic power dispatch problem of a large-scale system. Six-unit, fifteen-unit, and forty-unit sample systems with non-linear characteristics of the generator, such as ramp-rate limits and prohibited operating zones are considered to illustrate the effectiveness of the proposed method. The proposed method results have been compared with the results of genetic algorithm and particle swarm optimization methods reported in the literature. Test results show that the proposed IDP approach can obtain a higher quality solution with better performance.

Development of Synchrophasor Data Aquisition and Transmission Systems Using the GPS and the Satellite Network (GPS와 위성통신을 이용한 동기위상 데이터 취득 및 전송장치 개발)

  • Kwon, Dae-Yun;Kim, Ho-Woong;Kim, Dong-Sung;Yoon, Sang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.598-599
    • /
    • 2007
  • The electricity supply industry for which high stability and quality of power are the primary aim of power company and the first order of business target. As the facilities of generations, transmissions and substations are increased every year, power system becomes more complex and hard to control. The complexity of the power system causes harmful influence on its security and power facilities. Moreover, difficulty of predicting weather condition in these days with its complexity increases the level of uncertainty of energy demand. Wide area online monitoring of power system offers lots of informations and solutions which clear the causes of insecurity in power system. In this paper, we presents the development of synchrophasor data measurement and transmission system using satellite network for power system online monitoring.

  • PDF