• 제목/요약/키워드: Power Transfer

검색결과 3,288건 처리시간 0.031초

최적 효율 무선 전력 전송을 위한 Magnetic Beam 형성 (Magnetic Beamforming for Optimum Efficiency Wireless Power Transfer)

  • 정형존;최익
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.79-84
    • /
    • 2020
  • 무선 전력 전송은 유선 전력 전송 보다 편리하지만 전송거리가 짧고 효율이 낮다. 또한, 여러 장치를 동시에 충전하기 어렵다. 본 논문에서는 무선 전력 전송의 전송 거리를 증가시키고 효율을 향상시키기 위해 다수의 송신코일을 이용해서 Magnetic Beam을 형성하는 방법을 제안한다. 이를 위해 송신코일 전류와 수신코일 중심에서의 자속밀도 사이의 관계를 모델링하고, 의사역행렬(Pseudoinverse)의 특성을 이용해 최적의 송신코일 전류를 계산한다. 마지막으로 Simulation을 통해 제안한 방법의 타당성을 검증한다.

A Modern Automatic Bus Transfer Scheme

  • Sidhu Tarlochan S.;Balamourougan Vinayagam;Thakur Manish;Kasztenny Bogdan
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.376-385
    • /
    • 2005
  • The proliferation of technology has made global conduction of business increasingly dependent upon the availability of reliable power. As a result, alternate power systems are being installed and expanded to protect the broadening scope of critical electrical loads. Bus transfer restores designated critical loads to an alternate source when utility derived service becomes inadequate or goes out of service due to any contingency. This paper describes the practices, requirements and implementation of bus transfer of motor loads to an alternate source of power. A new high-speed automatic bus transfer scheme is proposed which includes the development of a new algorithm for determining the type of bus transfer required and the realization of the scheme by using modem protection devices and intra-substation communication facilities.

전자기기 냉각용 압전팬의 열전달 향상 (Heat Transfer Enhancement of a Piezoelectric Fan for Cooling of Electronic Devices)

  • 김은필;윤정인
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.14-21
    • /
    • 2014
  • Piezoelectric fans are thin elastic beams whose vibratory motion is actuated by means of a piezoelectric material bonded to the beam. These fans have found use as a means to enhance convective heat transfer while requiring only small amounts of power. This study presents new types of models with heat sink having air passage and investigates experimentally their heat transfer characteristics. From the comparison results for four models, the heat transfer coefficients of model 1 are approximately 44~66% higher than those of the reference model 0. The model 1 show the best overall performance about heat transfer and cooling capability. As shown in above results, it is necessary to design the heat sink with air pass for cooling of electronic devices, in order to increase the convective heat transfer coefficient of a piezoelectric fan for electronic cooling.

저가격 고 신뢰성의 400Hz 전원의 무순단 전력절환용 개선된 동기화 기법 (An Improved Synchronization Control Scheme of a Low Cost 400Hz Power Supply for No-Break Power Transfer)

  • 정석언;현동석
    • 전력전자학회논문지
    • /
    • 제19권5호
    • /
    • pp.470-474
    • /
    • 2014
  • This study proposes an improved synchronization control scheme for a low-cost 400Hz power supply for a no-break power transfer system. In the case of aircraft applications, the 400Hz power supply called ground power units is accepted and used as the external electrical power system during stopovers on ground. A momentary break in the supply occurs when shifting from one power source to another. To allow shifting without a break in the supply, the two power sources are momentarily connected in parallel. The proposed synchronization control is achieved by connecting an existing synchronization bus to the voltage zero-crossing signal of a generator power with discrete logic ICs and analog circuits. Therefore, unlike expensive controllers, such as DSP and CAN, the proposed control scheme is rather simple and may decrease operational cost. The practical feasibility of the proposed control scheme is proven by experimental results.

Magnetic-Field-Model and Circuit-Model Based Analysis of Three-Phase Magnetically Coupled Resonant Wireless Power Transfer Systems with Cylinder-Shaped Coils

  • Chen, Xuling;Fu, Xiewei;Jiang, Chong;Pei, Cunhui;Liu, Fuxin
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1154-1164
    • /
    • 2018
  • In single-phase magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the transfer characteristics, including the output power and transfer efficiency, are significantly influenced by the spatial scales of its coils. As a potential alternative, a three-phase MCR WPT system with cylinder-shaped coils that are excited in a voltage-fed manner has been proposed to satisfy the requirements of compact space. This system adopts a phase-shifted angle control scheme to generate a rotating magnetic field and to realize omnidirectional WPT that is immune to spatial scales. The magnetic field model and equivalent circuit models are built to holistically analyze the system characteristics under different angular misalignments. Research results show that the transfer characteristics can be improved by modulating the phase-shifted angle in each phase. Experiments have also been carried out to evaluate the accuracy of the theoretical analysis and to confirm the validity of the system modeling method.

6.78 MHz, 100 W, 30 cm 거리 무선 전력 전송 시스템의 전선별 손실 및 효율 비교 (Loss and Efficiency Dependence of a 6.78 MHz, 100 W, 30 cm Distance Wireless Power Transfer System on Cable Types)

  • 이승환;이병송;정신명;박찬배
    • 전기학회논문지
    • /
    • 제64권11호
    • /
    • pp.1651-1657
    • /
    • 2015
  • In MHz operating wireless power transfer systems, skin- and proximity-effect losses in the transmitter and the receiver coils dominate the coil-to-coil efficiency of the system. A Litz-wire was regarded as a common solution for minimizing such Ohmic losses in high frequencies. In this paper, equivalent series resistances of 12 different cables including Litz-wire and copper tubing have been calculated and measured for a 6.78 MHz, 100W, 30 cm wireless power transfer system. It has been shown that the copper tubing has lower resistances compared to the Litz-wire in that frequency and a wireless power transfer system with the copper tubing was able to achieve much higher efficiency than a system using the Litz-wire. Calculations of the resistances and efficiencies were accomplished with analytical equations and those calculations were evaluated by experimental results.

Feasible approach of contactless power transfer technology combined with HTS coils based on electromagnetic resonance coupling

  • Chung, Yoon Do;Yim, Seong Woo;Hwang, Si Dole
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권1호
    • /
    • pp.40-44
    • /
    • 2013
  • The contactless power transfer (CPT) systems have been recently gaining popularity widely since it is an available option to realize the power delivery and storage with connector-free devices across a large air gap. Especially, the CPT with electromagnetic resonance coupling method is possible to exchange energy within 2 m efficiently. However, the power transfer efficiency of CPT in commercialized products has been limited because the impedance matching of coupled coils is sensitive. As a reasonable approach, we combined the CPT system with HTS wire technology and called as, superconducting contactless power transfer (SUCPT) system. Since the superconducting coils have an enough current density, the superconducting antenna and receiver coils at CPT system have a merit to deliver and receive a mass amount of electric energy. In this paper, we present the feasibility of the SUCPT system and examine the transmission properties of SUCPT phenomenon between room temperature and very low temperature at 77 K as long as the receiver is within 1.0 m distance.

Analysis of Key Parameters for Inductively Coupled Power Transfer Systems Realized by Detuning Factor in Synchronous Generators

  • Liu, Jinfeng;Li, Kun;Jin, Ningzhi;Iu, Herbert Ho-Ching
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1087-1098
    • /
    • 2019
  • In this paper, a detuning factor (DeFac) method is proposed to design the key parameters for optimizing the transfer power and efficiency of an Inductively Coupled Power Transfer (ICPT) system with primary-secondary side compensation. Depending on the robustness of the system, the DeFac method can guarantee the stability of the transfer power and efficiency of an ICPT system within a certain range of resistive-capacitive or resistive-inductive loads. A MATLAB-Simulink model of a ICPT system was built to assess the system's main evaluation criteria, namely its maximum power ratio (PR) and efficiency, in terms of different approaches. In addition, a magnetic field simulation model was built using Ansoft to specify the leakage flux and current density. Simulation results show that both the maximum PR and efficiency of the ICPT system can reach almost 70% despite the severe detuning imposed by the DeFac method. The system also exhibited low levels of leakage flux and a high current density. Experimental results confirmed the validity and feasibility of an ICPT system using DeFac-designed parameters.

Immunity Test for Semiconductor Integrated Circuits Considering Power Transfer Efficiency of the Bulk Current Injection Method

  • Kim, NaHyun;Nah, Wansoo;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권2호
    • /
    • pp.202-211
    • /
    • 2014
  • The bulk current injection (BCI) and direct power injection (DPI) method have been established as the standards for the electromagnetic susceptibility (EMS) test. Because the BCI test uses a probe to inject magnetically coupled electromagnetic (EM) noise, there is a significant difference between the power supplied by the radio frequency (RF) generator and that transferred to the integrated circuit (IC). Thus, the immunity estimated by the forward power cannot show the susceptibility of the IC itself. This paper derives the real injected power at the failure point of the IC using the power transfer efficiency of the BCI method. We propose and mathematically derive the power transfer efficiency based on equivalent circuit models representing the BCI test setup. The BCI test is performed on I/O buffers with and without decoupling capacitors, and their immunities are evaluated based on the traditional forward power and the real injected power proposed in this work. The real injected power shows the actual noise power level that the IC can tolerate. Using the real injected power as an indicator for the EMS test, we show that the on-chip decoupling capacitor enhances the EM noise immunity.

Estimation of Transferred Power from a Noise Source to an IC with Forwarded Power Characteristics

  • Pu, Bo;Kim, Taeho;Kim, SungJun;Kim, Jong-Hyeon;Kim, SoYoung;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • 제13권4호
    • /
    • pp.233-239
    • /
    • 2013
  • This paper proposes an accurate approach for predicting transferred power from a noise source to integrated circuits based on the characteristics of the power transfer network. A power delivery trace on a package and a printed circuit board are designed to transmit power from an external source to integrated circuits. The power is demonstrated between an injection terminal on the edge of the printed circuit board and integrated circuits, and the power transfer function of the power distribution network is derived. A two-tier calibration is applied to the test, and scattering parameters of the network are measured for the calculation of the power transfer function. After testing to obtain the indispensable parameters, the real received and tolerable power of the integrated circuits can be easily achieved. Our proposed estimation method is an enhancement of the existing the International Electrotechnical Commission standard for precise prediction of the electromagnetic immunity of integrated circuits.