• Title/Summary/Keyword: Power System Measurement

Search Result 2,042, Processing Time 0.029 seconds

Design and Implementation of a DSP-Based Multi-Channel Power Measurement System

  • Jeon Jeong-Chay;Oh Hun
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.214-220
    • /
    • 2005
  • In order to improve energy efficiency and solve power disturbances, power components measurement for both the supply and demand side of a power system must be implemented before appropriate action on the power problems can be taken. This paper presents a DSP (Digital Signal Processor)-based multi-channel (voltage 8-channel and current 10-channel) power measurement system that can simultaneously measure and analyze power components for both supply and demand. Voltage 8-channel and current 10-channel measurement is made through voltage and current sensors connected to the developed system, and power components such as reactive power, power factor and harmonics are calculated and measured by the DSP. The measured data are stored in a personal computer (PC) and a commercial program is then used for measurement data analysis and display. After voltage and current measurement accuracy revision using YOKOGAWA 2558, the developed system was tested using a programmable ac power source. The test results showed the accuracy of the developed system to be about 0.3 percent. Also, a simultaneous measurement field test of the developed system was implemented by application to the supply and demand side of the three-phase power system.

Harmonic State Estimation in Power System (전력시스템 고조파 상태 추정에 관한 연구)

  • Park, H.C.;Lee, J.P.;Wang, Y.P.;Chong, H.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.117-120
    • /
    • 2002
  • Electrical power system has very complexity problem that it is plan measurement system to achieve Harmonic State Estimation (HSE). This complexity problem depends on discord of necessary accuracy, certainty of noise that exist in data communication damage and converter, adaptability of network modification and minimum of expense size of system, estimated monitering. Also, quantity of available measurement equipment for harmonic measurement has been limited. Therefore, systematic method that choose measurement location for harmonic state estimation. This paper is that see proposed HSE that use Observability Analysis(OA) for harmonic state estimation of electrical power system. OA depends on measurement number, measurement location and measurement form here, it is analysis method that depend on network form and admittance of the system. OA used achieve harmonic state estimation that it is Applied to New Zealand electrical power system to prove validity of HSE algorithm that propose. This study result about harmonic state estimation of electrical power system displayed very economical and effective method by OA.

  • PDF

The development of synchronized phasor measurement device for real time power system control (실시간 계통제어를 위한 동기위상측정장치 개발)

  • Jeon, Jin-Hong;Kim, Hak-Man;Chun, Yeong-Han;Kook, Kyung-Soo;Kim, Ji-Won;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.85-87
    • /
    • 2000
  • In real-time power system control, it is essential to measure the power system variables which are voltage. current, real and reactive power, power factor, system frequency and etc. this variables can be estimated or calculated by the synchronized phasor informations of voltage and current. Therefore, the synchronized phasor measurement of voltage and current is very important to real-time power system control. So, we develop SPMD(Synchronized Phasor Measurement Device) for synchronized phasor measurement of voltage and current. In this paper, we present the design and implementation of SPMD for real-time phasor measurement and prove its performance by the test results.

  • PDF

Voltage Measurement Accuracy Assessment System for Distribution Equipment of Smart Distribution Network

  • Cho, Jintae;Kwon, Seong-chul;Kim, Jae-Han;Won, Jong-Nam;Cho, Seong-Soo;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1328-1334
    • /
    • 2015
  • A new system for evaluating the voltage management errors of distribution equipment is presented in this paper. The main concept of the new system is to use real distribution live-line voltage to evaluate and correct the voltage measurement data from distribution equipment. This new approach is suitable for a new Distribution Management System (DMS) which has been developed for a distribution power system due to the connection of distributed generation growth. The data from distribution equipment that is installed at distribution lines must be accurate for the performance of the DMS. The proposed system is expected to provide a solution for voltage measurement accuracy assessment for the reliable and efficient operation of the DMS. An experimental study on actual distribution equipment verifies that this voltage measurement accuracy assessment system can assess and calibrate the voltage measurement data from distribution equipment installed at the distribution line.

Optimal WAMS Configuration in Nordic Power System

  • Mohamed A.M. Hassan;Omar H. Abdalla;Hady H. Fayek;Aisha H.A. Hashim;Siti Fauziah Toha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.130-138
    • /
    • 2023
  • The Smart grids are considered as multi-disciplinary power systems where the communication networks are highly employed. This paper presents optimal wide area measurement system (WAMS) configuration in Nordic power system. The transition from SCADA to WAMS becomes now trend in all power systems to ensure higher reliability and data visibility. The optimization applied in this research considered the geographical regions of the Nordic power system. The research considered all the devices of WAMS namely phasor measurement units (PMUs), phasor data concentrators (PDCs) and communication links. The study also presents two scenarios for optimal WAMS namely base case and N-1 contingency as different operating conditions. The result of this research presents technical and financial results for WAMS configuration in a real power system. The optimization results are performed using MATLAB 2017a software application.

A Study On Measurement-based Load Modeling Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 측정기반의 부하모델링 연구)

  • Lee, Kyung-Sang;Park, Rae-Jun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1079-1085
    • /
    • 2011
  • To supply electrical power with high quality, the power system must be optimized in many ways such as planning, control and management. In order to optimize the power system, the analysis of the power system is necessary. The elements of the power system require an accurate model to analysis of the power system. The components of the power systems such as generators, transformers and transmission lines have been studied and researched a lot in their modeling and very sophisticated models have been proposed. However, in case of load in-depth studies on the exact model are required. In this paper, measurement-based load modeling method using real-time measured data is proposed in various methods to reflect the characteristics of the load. To prove the validity of the proposed method, PSCAD/EMTDC program is used to configure the power system and measurement data according to the various failures are used to study on load modeling.

Development of Power Measurement System Using Computer (컴퓨터를 이용한 전력 계측기 시스템 개발)

  • 김태성;이우기;오수홍;오무송;최장주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.301-305
    • /
    • 1998
  • The Power measurement that can measure a single quantity does not smooth to install a system, and are not convenient to use. These measuring values are vary difficult for mutual operation and analyzing, and that have too many problems to compile measured databases. If each single measured values are mutual assist, correction and reform, the system will be able to be improved by minimizing differences between measure quantities and as making many different measurement system (Voltage, Current, Power and Resistor) is installed in one system. This study is useful to develope the power measurement system that is easier to analyze and management by database all of the parameter values because the power measurement system is able to be interbased with PC as requirement of industralization and information age.

  • PDF

Development of 3-D. Displacement Measurement System for Critical Pipe of Fossil Power Plant (화력발전소 주배관 3차원 변위측정시스템 개발)

  • Song, G.W.;Hyun, J.S.;Ha, J.S.;Cho, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1198-1205
    • /
    • 2003
  • Most domestic fossil power plant have exceeded 100,000 hours of operation with the severe operating condition. Among the critical components of fossil power plant, high temperature steam pipe system have had a many problems and damage from unstable displacement behavior because of frequent start up and shut down. In order to prevent the serious damage and failure of the critical pipe system in fossil power plant, 3-dimensional displacement measurement system were developed for the on-line monitoring system. 3-D Measurement system was developed with using the LVDT type sensor and rotary encoder type sensor, this system was installed and operated on the real power plant successfully. In the future time, network system of on-line diagnosis for critical pipe will be designed.

  • PDF

Implementation of Multi-Channel Power Components Measuremen System (다채널 전력분석시스템의 구현)

  • Lee, Myung-Un;Yoo, Jae-Geun;Lee, Sang-Ick;Cho, Myung-Hyun;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.233-238
    • /
    • 2006
  • In order to solve power disturbances, power components measurement for both supply and demand side of power system must be implemented. This paper proposed a DSP (Digital Signal Processor)-based multi-channel (voltage 8-channel and current 10-channel) power components measurement system that simultaneously can measure and analyze power components for both supply md demand side. After voltage and current measurement accuracy revision using YOKOGAWA 2558, the developed system was tested in the field.

A Study on the Low Frequency Oscillation Using PMU Measurement Data (PMU 데이터를 이용한 저주파 진동분석 연구)

  • Kim, Yonghak;Nam, Suchul;Ko, Baekkyeong;Kang, Sungbum;Shim, Kwansik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.245-252
    • /
    • 2020
  • It is very important to evaluate on/off-line stability to operate the power system stably and economically. Until now, we have continuously secured the operation reliability of the power system through the evaluation of transient, voltage and small signal stability. This paper proposes that it is possible to operate in KWAMS by applying the multi-section analysis and subspace methods and verifying the reliability of the algorithms to directly estimate the dominant oscillation mode of the power system from the signal waveform acquired from the phasor measurement units. In addition, this paper shows that the dominant oscillation mode can be detected from real-time measurement data in power systems. Therefore, if we can monitor the state of the power system in real time, it is possible to avoid a large-scale power outage by knowing the possibility of the power system accident in advance.