DOI QR코드

DOI QR Code

Optimal WAMS Configuration in Nordic Power System

  • Mohamed A.M. Hassan (Department of Electrical and Computer Engineering, International Islamic University Malaysia (IIUM)) ;
  • Omar H. Abdalla (Electrical Power and Machines Department, Faculty of Engineering, Helwan University) ;
  • Hady H. Fayek (Department of Mechatronics Engineering, International Islamic University Malaysia (IIUM)) ;
  • Aisha H.A. Hashim (Department of Electrical and Computer Engineering, International Islamic University Malaysia (IIUM)) ;
  • Siti Fauziah Toha (Department of Mechatronics Engineering, International Islamic University Malaysia (IIUM))
  • Received : 2023.03.05
  • Published : 2023.03.30

Abstract

The Smart grids are considered as multi-disciplinary power systems where the communication networks are highly employed. This paper presents optimal wide area measurement system (WAMS) configuration in Nordic power system. The transition from SCADA to WAMS becomes now trend in all power systems to ensure higher reliability and data visibility. The optimization applied in this research considered the geographical regions of the Nordic power system. The research considered all the devices of WAMS namely phasor measurement units (PMUs), phasor data concentrators (PDCs) and communication links. The study also presents two scenarios for optimal WAMS namely base case and N-1 contingency as different operating conditions. The result of this research presents technical and financial results for WAMS configuration in a real power system. The optimization results are performed using MATLAB 2017a software application.

Keywords

References

  1. Li, F.; Qiao, W.; Sun, H.; Wan, H.; Wang, J.; Xia, Y.; Xu, Z.; Zhang, P. Smart transmission grid: Vision and framework. IEEE Trans. Smart Grid 2010, 1, 168-176 https://doi.org/10.1109/TSG.2010.2053726
  2. H. H. Fayek and O. H. Abdalla, "Operation of the Egyptian Power Grid with Maximum Penetration Level of Renewable Energies Using Corona Virus Optimization Algorithm," Smart Cities, vol. 5, no. 1, pp. 34-53, Jan. 2022. https://doi.org/10.3390/smartcities5010003
  3. O. H. Abdalla, A. M. Abdel Ghany, and Hady H. Fayek, "Coordinated PID Secondary Voltage Control of a Power System Based on Genetic Algorithm", 2016 Eighteenth International Middle East Power System Conference (MEPCON), Helwan University, Cairo, Egypt, 27-29 December 2016
  4. O. H. Abdalla, H. H. Fayek, and A. M. Abdel Ghany, "Secondary Voltage Control Application in a Smart Grid with 100% Renewables," Inventions, vol. 5, no. 3, p. 37, Aug. 2020.
  5. Omar H. Abdalla; Hady H. Fayek; A. M. Abdel Ghany. "Secondary and Tertiary Voltage Control of a Multi-Region Power System." Electricity 1, no. 1: 37-59, MDPI, September 2020, journal paper. https://doi.org/10.3390/electricity1010003
  6. Fayek, H.H. 5G Poor and Rich Novel Control Scheme Based Load Frequency Regulation of a Two-Area System with 100% Renewables in Africa. Fractal Fract. 2020, 5, 2.
  7. M. Beg Mohammadi, R. Hooshmand and F. Haghighatdar Fesharaki, "A New Approach for Optimal Placement of PMUs and Their Required Communication Infrastructure in Order to Minimize the Cost of the WAMS," in IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 84-93, Jan. 2016, doi: 10.1109/TSG.2015.2404855.
  8. Hady H. Fayek, K. R. Davis, A. M. A. Ghany and O. H. Abdalla, "Configuration of WAMS and Pilot Bus Selection for Secondary Voltage Control in the Egyptian Grid," 2018 North American Power Symposium (NAPS), Fargo, ND, USA, 2018, pp. 1-6
  9. F. Li et al., "Smart Transmission Grid: Vision and Framework," in IEEE Transactions on Smart Grid, vol. 1, no. 2, pp. 168-177, Sept. 2010, doi: 10.1109/TSG.2010.2053726.
  10. H. Su, F. Kang and C. Liu, "Transmission Grid Secondary Voltage Control Method Using PMU Data," in IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2908-2917, July 2018, doi: 10.1109/TSG.2016.2623302.
  11. L. M. Putranto, R. Hara, H. Kita and E. Tanaka, "WAMS hybrid configuration for real time voltage stability monitoring application," 2016 17th International Scientific Conference on Electric Power Engineering (EPE), 2016, pp. 1-6, doi: 10.1109/EPE.2016.7521764.
  12. C. Thilakarathne, L. Meegahapola and N. Fernando, "A Modified Lyapunov Exponent based Approach for Real-Time Voltage Stability Assessment Using PMUs," 2018 8th International Conference on Power and Energy Systems (ICPES), 2018, pp. 104-108, doi: 10.1109/ICPESYS.2018.8626965.
  13. M. Hasanuzzaman Shawon, S. M. Muyeen, A. Ghosh, S. M. Islam and M. S. Baptista, "Multi-Agent Systems in ICT Enabled Smart Grid: A Status Update on Technology Framework and Applications," in IEEE Access, vol. 7, pp. 97959-97973, 2019, doi: 10.1109/ACCESS.2019.2929577.
  14. V. K. Agrawal and P. K. Ararwal, "Challenges faced and lessons learnt in implementation of first synchrophasors project in the Northern India", 3rd International Exhibition & Conference, 19-20 April 2011.
  15. A. S. Kumar et al., "Open Nodal Power Flow Model of the Nordic Power System," 2021 IEEE Madrid PowerTech, 2021, pp. 1-6, doi: 10.1109/PowerTech46648.2021.9494886.
  16. Kouveliotis-Lysikatos, I.; Waernlund, A.; Marin, M.; Amelin, M.; Soder, L. Open-Source Modelling and Simulation of the Nordic Hydro Power System. Energies 2021, 14, 1425. http://doi.org/10.3390/en14051425