• Title/Summary/Keyword: Power Storage Device

Search Result 308, Processing Time 0.038 seconds

SSR (Simple Sector Remapper) the fault tolerant FTL algorithm for NAND flash memory

  • Lee, Gui-Young;Kim, Bumsoo;Kim, Shin-han;Byungsoo Jung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.932-935
    • /
    • 2002
  • In this paper, we introduce new FTL(Flash Translation Layer) driver algorithm that tolerate the power off errors. FTL driver is the software that provide the block device interface to the upper layer software such as file systems or application programs that using the flash memory as a block device interfaced storage. Usually, the flash memory is used as the storage devices of the mobile system due to its low power consumption and small form factor. In mobile system, the state of the power supplement is not stable, because it using the small sized battery that has limited capacity. So, a sudden power off failure can be occurred when we read or write the data on the flash memory. During the write operation, power off failure may introduce the incomplete write operation. Incomplete write operation denotes the inconsistency of the data in flash memory. To provide the stable storage facility with flash memory in mobile system, FTL should provide the fault tolerance against the power off failure. SSR (Simple Sector Remapper) is a fault tolerant FTL driver that provides block device interface and also provides tolerance against power off errors.

  • PDF

Circuit Design of Parallel Power Operation Equipment for Peak Power Reduction (상전원의 피크치 전력 감소를 위한 전력병합장치 회로설계)

  • Yang, Jaesoo;Kim, Donghan;Kim, ManDo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.9
    • /
    • pp.273-278
    • /
    • 2014
  • Recent use of electricity during peak hours electricity supply-demand imbalance is inevitable that limit power use force. Therefore, in this paper, a circuit of parallel power operation equipment for peak power reduction which saves the power to electricity storage device during the non-peak power time and supply from the storage power during the expected power shortages time is designed Through this circuitry, the peak power of the commercial power supply with the parallel operation and connection of the commercial power supply and the power supply of the inverter from electricity storage that is a key feature of PRS(Peak power Reduction System) can be controlled. In addition, in order to increase the efficiency, a Transless Power Circuit DC-AC inverter is developed. Moreover, a variable impedance control is applied to the storage of electric power of an Uninterruptible Power Supply associated with a commercial power source.

A Study of Economic ESS Utilization Based on Supplement Control Plan for Stable Wind Energy Extraction (풍력발전의 전력공급 안정화를 위한 ESS 보조제어 기법과 경제적 용량 산정 연구)

  • Jung, Seungmin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.22-28
    • /
    • 2018
  • In case of developing a combined system by a number of distributed resources with storage device, a number of application suggests a huge capacity can derive operational flexibility both power supply issues or when unexpected situation imposed. However, it is important to determine a resonable energy capacity because the device have many controversial cost issues in current power system industry. An ESS application which focusing essentially required points can induce appropriate storage capacity that required in economic operation. In this paper, a curtailment supporting algorithm based on storage device is introduced, and applied in the capacity calculation method. The main algorithm pursues handling minor exceeding quantities which can cause mechanical load at blade; This paper tries to include it for configuring hybrid algorithm with pitch control. Several fluctuating conditions are utilized in simulation to reflect critical situation. The analyzing process focuses on the control feasibility with applied capacity and control method.

Experimental Evaluation of an Energy Storage Device with High Rotaional Speed (에너지 저장용 고속회전기의 실험적 평가)

  • Lee, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.193-196
    • /
    • 2014
  • Experimantal evaluation of an energy storage device with high rotational speed to store regenerative energy which might be generated during the braking period of the trains is presented. The proposed ESS is small scale model and has 5kW output power, high rotational speed. In general railway trains generate regenerative energy for 10-20 sec when the train brakes and also high traction energy is needed for very short moment (10 sec) when the train increases the traction force. Considering such characteristics of the railway system energy storage device for the railway should have very fast response property. Among the various energy storage devices flywheel energy storage system has the fastest response property, which means that flywheel ESS is the most suitable for the railway system.

  • PDF

Designing for the Off-line UPS using SMB Flywheel Energy Storage System (초고속 플라이휠 에너지 저장시스템을 이용한 Off-line UPS 제작)

  • 최재호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.689-692
    • /
    • 2000
  • This paper presents a designing for the Off-line UPS usig SMB Flywheel Energy Storage System. This described flywheel energy storage system is designed to replace of the conventional EMB(Electro Mechanical Battery) system. To realize the high efficiency and to minimize the torque ripple the waveform of the inverter output current is controlled to be sinusoidal. The actual performance of the Off-line UPS using flywheel energy storage system is described. The prototype device was manufactured, The experimental result has good characteristics at a time of power transition region and regeneration modes,

  • PDF

Dynamic Analysis and Controller Design for Standalone Operation of Photovoltaic Power Conditioners with Energy Storage

  • Park, Sun-Jae;Shin, Jong-Hyun;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2004-2012
    • /
    • 2014
  • Energy storage devices are necessary to obtain stable utilization of renewable energy sources. When black-out occurs, distributed renewable power sources with energy storage devices can operate under standalone mode as uninterruptable power supply. This paper proposes a dynamic response analysis with small-signal modeling for the standalone operation of a photovoltaic power generation system that includes a bidirectional charger/discharger with a battery. Furthermore, it proposes a DC-link voltage controller design of the entire power conditioning system, using the storage current under standalone operation. The purpose of this controller is to guarantee the stable operation of the renewable source and the storage subsystem, with the power conversion of a very efficient bypass-type PCS. This paper presents the operating principle and design guidelines of the proposed scheme, along with performance analysis and simulation. Finally, a hardware prototype of 1-kW power conditioning system with an energy storage device is implemented, for experimental verification of the proposed converter system.

Bi-Directional Buck-Boost Forward Converter for Photovoltaic Module type Power Conditioning System (태양광 모듈형 전력조절기를 위한 양방향 벅-부스트 포워드 컨버터)

  • Kim, Kyoung-Tak;Jeon, Young-Tae;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.335-342
    • /
    • 2016
  • This paper proposes an energy storage-assisted, series-connected module-integrated power conversion system that integrates a photovoltaic power conditioner and a charge balancing circuit. In conventional methods, a photovoltaic power conditioner and a cell-balancing circuit are needed for photovoltaic systems with energy storage devices, but they cause a complex configuration and high cost. Moreover, an imbalanced output voltage of the module-integrated converter for PV panels can be a result of partial shading. Partial shading can lead to the fault condition of the boost converter in shaded modules and high voltage stresses on the devices in other modules. To overcome these problems, a bidirectional buck-boost converter with an integrated magnetic device operating for a charge-balancing circuit is proposed. The proposed circuit has multiple secondary rectifiers with inductors sharing a single magnetic core, which works as an inductor for the main bidirectional charger/discharger of the energy storage. The secondary rectifiers operate as a cell-balancing circuit for both energy storage and the series-connected multiple outputs of the module-integrated converter. The operating principle of the cell-balancing power conversion circuit and the power stage design are presented and validated by PSIM simulation for analysis. A hardware prototype with equivalent photovoltaic modules is implemented for verification. The results verify that the modularized photovoltaic power conversion system in the output series with an energy storage successfully works with the proposed low-cost bidirectional buck-boost converter comprising a single magnetic device.

Power Quality Monitoring Algorithm Using the Protective Relay (보호계전기를 이용한 전기 품질 감시 기법 연구)

  • Choi In. S.;Lee Kang. S.;Choi Myeon. S.;Lim Seong. I.;Lee Seung. J.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.581-588
    • /
    • 2004
  • Power qualify monitoring system is devoted to more concern than before, because the innovation of industrial technology needs more accurate instruments and more advanced power quality. This paper was studied on using data of the protective relay by Power Quality Monitor. This paper was proposed the wave storage condition and monitoring clauses of the protective relay as a power quality monitoring device. The protective relay will have problem to save data for PQM analysis because the protective relay memory is limited. Therefore this paper was proposed new a data compression of data got from the protective relay. This method is wave compression comparison algorithm using the DFT. The compression rate is higher than any other established method. This method can be real time storage. This algorithm is verified using the comparison among other compression rate and proved by Real Time Digital Simulator (RTDS).

Surge Immunity Performance Enhancement Techniques on Battery Management System (전지관리장치(BMS)의 서지내성 성능향상 기법)

  • Kim, Young-Sung;Rim, Seong-Jeong;Seo, Woohyun;Jung, Jeong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.196-200
    • /
    • 2015
  • The switching noise in the power electronics of the power conversion equipment (Power Conditioning System) for large energy storage devices are generated. Since the burst-level transient noise from being generated in the power system at a higher power change process influences the control circuit of the low voltage driver circuit. Noise may cause the malfunction of the control device even if no dielectric breakdown leads to a control circuit. To overcome this, this paper proposes the installation of an additional nano-surge protection device on the power supply DC output circuit of the battery management unit.

The Characteristics on the Change of Cerebral Cortex using Alternating Current Power Application for Transcranial Magnetic Stimulation

  • Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2014
  • A transcranial magnetic stimulation device is a complicated appliance that employs a switching power device designed for discharging and charging a capacitor to more than 1 kV. For a simple transcranial magnetic stimulation device, this study used commercial power and controlled the firing angle using a Triac power device. AC 220V 60 Hz, the power device was used directly on the tanscranial magnetic stimulation device. The power supply device does not require a current limiting resistance in the rectifying device, energy storage capacitor or discharge circuit. To control the output power of the tanscranial magnetic stimulation device, the pulse repetition rate was regulated at 60 Hz. The change trigger of the Triac gate could be varied from $45^{\circ}$ to $135^{\circ}$. The AVR 182 (Zero Cross Detector) Chip and AVR one chip microprocessor could control the gate signal of the Triac precisely. The stimulation frequency of 50 Hz could be implemented when the initial charging voltage Vi was 1,000 V. The amplitude, pulse duration, frequency stimulation, train duration and power consumption was 0.1-2.2T, $250{\sim}300{\mu}s$, 0.1-60 Hz, 1-100 Sec and < 1 kW, respectively. Based on the results of this study, TMS can be an effective method of treating dysfunction and improving function of brain cells in brain damage caused by ischemia.