• Title/Summary/Keyword: Power Storage

Search Result 2,642, Processing Time 0.028 seconds

Development of New Effectiveness Assessment Indices of Pumped Storage Power Plant (양수발전기의 신 효용성 평가 지수 개발)

  • Lee, Sung-Hun;Choi, Jae-Seok;Cha, Jun-Min;Kim, Daniel
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.867-874
    • /
    • 2014
  • The pumped storage power plants have excellent load following characteristics. It can also be committed quickly for synchronous reserve when it is in the generating mode because it can readily increase its generating power and, consequently, increases the overall system reliability. There are strong incentives for standing the system reliability. Additionally, $CO_2$ emission can be typically impacted due to operation of pumped generators. The increase or decrease of $CO_2$ depends on the generation mix. This paper proposes evaluation of reliability, economy and environment of power system considering pumped generator. This paper describes three case studies of the reliability and economy and environment according to capacity factor and storage capacity of pumped generators. The probabilistic production simulation model is used in this paper. The practicality and effectiveness of the proposed approach are demonstrated by simulation studies for a real size power system model on the $5^{th}$ power plan in Korea.

A Basic Study on the Air Circulation System for Heating using Solar and Geothermal Heat - Focused on Trombe Wall Thermal Storage Performance using Solar Heat - (태양열과 지열을 이용한 난방용 공기순환시스템 기초연구 - 태양열을 이용한 트롬월식의 축열성능 중심으로 -)

  • Kim, Byung-Yun;Choi, Yong-Seok
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.19 no.4
    • /
    • pp.49-56
    • /
    • 2017
  • Each country in the world currently concentrates on shifting into clean energy, which can be alternative energy, for global environment protection and solution to the problem of fossil fuel depletion. The Korean government is predicted to develop renewable energy, such as solar power, ground power, and offshore wind power, and to increase their supply ratios by ending the use of coals and nuclear power plants. This study conducted experiments on thermal storage performance of Trombe wall thermal storage materials using solar power and simulations in order to offer baseline data for the development of a hybrid air circulation system for heating that can maximize efficiency by simultaneously using solar and geothermal power. The study results are as follows: (1) In all the specimens with 3m, 5m, and 7m in the length of thermal storage pipe, $5.7^{\circ}C$, $7.8^{\circ}C$, and $10.5^{\circ}C$ rose, respectively, as the thermal storage effect of the specimens attaching insulation film and black tape to the general funnel. They were most excellent in terms of thermal storage effect. (2) As a result of thermal performance evaluation on the II type specimens, II-3 ($7.8^{\circ}C$ rise) > II-4 ($5.3^{\circ}C$ rise) > II-1 ($3.9^{\circ}C$ rise) > II-2 ($2.3^{\circ}C$ rise) was revealed, and thus II-3 (insulation film + black tape) was most effective as shown in the I type. (3) This study analyzed air current and temperature distribution inside of the greenhouse by linking actually measured values and simulation interpretation results through the interpretation of CFD (computational fluid dynamics). As a result, the parts absorbing heat and discharging heat around the thermal storage pipe could be visibly classified, and temperature distribution inside of the greenhouse around the thermal storage pipe could be figured out.

Economic Analysis of Energy Storage System for power system (전력계통에 설치되는 에너지 저장장치의 경제성 분석)

  • Choi, Joon-Young;Lee, Jong-Hyun;Ahn, Jong-Wook;Ko, Won-Suk;Hong, Jun-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.92-96
    • /
    • 2009
  • In this paper, economic analysis of Energy Storage System for power system is performed. Economic analysis is performed to show the benefits of Energy Storage System. Results illustrate the advantages of Energy Storage System not only acting as an alternative generation resource but also giving a better reliability and stability in power system.

  • PDF

Low Cost High Power Density Photovoltaic Power Conditioning System with an Energy Storage System

  • Jang, Du-Hee;Han, Sang-Kyoo
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.487-494
    • /
    • 2012
  • A new low cost high power density photovoltaic power conditioning system (PV PCS) with an energy storage system is proposed in this paper. Its high power density and cost effectiveness can be achieved through the unification of the maximum power point tracker and the battery charger/discharger. Despite the reduced power stage, the proposed system can achieve the same performance in terms of maximum power point tracking and battery charging/discharging as the conventional system. When a utility power failure happens, the proposed system cannot perform maximum power point tracking at the UPS mode. However, the predetermined battery voltage near the maximum power point of the PV array can effectively generate a reasonable PV power even at the UPS mode. Therefore, it features a simpler structure, less mass, lower cost, and fewer devices. Finally, to confirm the operation, validity, and features of the proposed system, a theoretical analysis and experimental results from a single phase AC 220Vrms/1.5kW prototype are presented.

Transient Stability Enhancement of Power System by Using Energy Storage System (에너지저장시스템을 이용한 전력계통의 과도안정도 향상)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.26-31
    • /
    • 2017
  • The conventional method of improving the transient stability in a power system is the use of reactive power compensation devices, such as the STATCOM and SVC. However, this traditional method cannot prevent the rapid voltage collapse brought about by the stalling of the motor due to a system fault. On the other hand, the ESS (Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast-acting power compensation provided by an energy storage system plays a significant role in enhancing the transient stability after a major fault in the power system. In this paper, a method of enhancing the transient stability using an energy storage system is proposed for power systems including a dynamic load, such as a large motor. The effectiveness of the energy storage system compared to conventional devices in enhancing the transient stability of the power system is presented. The results of the simulations show that the simultaneous injection of active and reactive power can enhance the transient stability more effectively.

Transient Stability Enhancement of Power System by Using Energy Storage System (풍력터빈 발전기가 연계된 전력계통에서 에너지저장시스템이 과도안정도에 미치는 영향)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.592-597
    • /
    • 2019
  • A conventional method to improve transient stability in power system is the use of reactive power compensation devices such as STATCOM and SVC. However, this traditional method cannot prevent a rapid voltage collapse brought on by motors stalling due to system fault. On the other hand, ESS(Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast active power compensation with energy storage system plays a significant role in transient stability enhancement after a major fault of power system. In this paper, transient stability enhancement method by using energy storage system is proposed for the power system including a dynamic load such as large motor. The effectiveness of energy storage system compared to conventional devices in enhancing transient stability of power system is presented. The results of simulations show that the simultaneous injection of active and reactive power can enhance more effectively transient stability.

Calculation of Appropriate Subsidies for Energy Storage System to Improve Power Self-sufficiency Consider Microgrid Operation (마이크로그리드 운영에 따른 전력자립 향상을 위한 에너지저장장치의 적정보조금 산정)

  • Choi, Yeon-Ju;Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.486-492
    • /
    • 2017
  • In recent years, renewable energy sources have been mentioned as solution to environmental regulation and energy supply-demand. Energy storage systems are needed to mitigate the intermittent output characteristics of renewable energy sources and to operate micro grid efficiently using renewable energy generation systems. However, despite the necessity of energy storage system, this cannot secure the economical efficiency of the energy storage system by high initial cost. In this paper, a micro grid is constructed to supply electric power to industrial customers by using solar power generation system and energy storage system among renewable energy generation power sources and operated to improve energy independence. In the case study, we use photovoltaic system which is representative renewable energy generation system. Unlike conventional photovoltaic system, this system uses floating photovoltaic system with the advantage of having high output and no land area limitations. It is operated for the purpose of improving energy independence in the micro grid. In order to secure economical efficiency, the energy storage system operates a micro grid with a minimum capacity. Finally, this paper calculates the appropriate subsidy for the energy storage capacity.

Seismic Fragility Analysis of Base Isolated Liquid Storage Tank (면진 유체 저장 탱크의 지진취약도 분석)

  • Ahn, Sung-Moon;Choi, In-Kil;Choun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.453-460
    • /
    • 2005
  • In this study, the seismic fragility analysis of a base isolated condensate storage tank installed in the nuclear power plant. The condensate storage tank is safety related structure in a nuclear power plant. The failure of this tank affect significantly to the core damage frequency of the nuclear power plants. The seismic analysis of the liquid storage tank was performed by the simple calculation method and the dynamic time storage analysis method. The convective and impulsive fluid mass is modeled as added masses proposed by several researchers. To evaluate the effectiveness of the isolation system, the comparison of HCLPF and core damage frequencies in non-isolated and isolated cases are carried out. It can be found from the results that the seismic isolation system increases the seismic capacity of a condensate storage tank and decreases the core damage frequency significantly.

  • PDF

Simulation of the Wind Power Generation System with Energy Storage System (전기저장 장치가 포함된 풍력발전 시스템에 대한 시뮬레이션)

  • Oh, Si-Doek;Lim, Hee-Sue;Seo, Seok-Ho;Kim, Ki-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.303-306
    • /
    • 2008
  • The wind power generation systems have a fluctuating or intermittent power output due to the variability of the wind speed. The amount of wind generation which can be connected to the grid without causing voltage stability problems is limited. In this study, the simulation of the wind power generation including energy storage system were performed to reduce the fluctuation of wind power output and to obtain the optimal operation planning of energy storage system.

  • PDF

Ride-Through Technique for PMSG Wind Turbines using Energy Storage Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.733-738
    • /
    • 2010
  • This paper deals with a ride-through technique for permanent-magnet synchronous generator (PMSG) wind turbine systems using energy storage systems (ESS). A control strategy which consists of current and power control loops for the energy storage systems is proposed. By increasing the generator speed, some portion of the turbine power can be stored in the system inertia. Therefore, the required energy capacity of the ESS can be decreased, which results in a low-cost system. In addition, the power fluctuations due to wind speed variations can be smoothened by controlling the ESS appropriately. The effectiveness of the proposed method is verified not only by the simulation results for a 2[MW] PMSG wind turbine system, but also by the experiment results for a reduced-scale turbine simulator.