• Title/Summary/Keyword: Power Shedding

Search Result 170, Processing Time 0.036 seconds

Clamp Type-dependent HCF Life Estimation of the Overhead Cable for Distribution Grids (고정 방식 차이에 따른 배전 가공전선의 고주기피로 수명 특성 비교 평가)

  • Lee, Dooyoung;Jung, Jinseung;Kim, Youngdae;Bang, Jiye
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.241-248
    • /
    • 2021
  • High cycle fatigue life for the cables with two different types of clamps is estimated comparatively through acceleration testing. The high cycle fatigue fracture of overhead lines is caused mainly by the aeolian vibration which is induced by vortex shedding. It is necessary to manage the integrity of cables continuedly considering that the aeolian vibration is unavoidable since it occurs in steady and relatively low wind velocity. Two types of clamps which are largely used for overhead lines of the distribution grids are selected and failure data are obtained by step stress testing with a electrodynamic shaker with them. The inverse power law is assumed to describe the stress-life relationship and the fatigue limit at any specified life is supposed to follow Weibull distribution. The life of the cable is defined as the number of cycles to the time that one of strands is completely broken. Finally, the fatigue limits of the cables with two clamp types are estimated at the reference life of 500 Mcycles and compared each other based on a bending vibration amplitude.

Acoustic resonance by Inserting Anti-noise Baffle in the Tube Bank of Boiler of a Large Fossil Power Plant (대형석탄화력발전용 보일러 관군의 Anti-Noise Baffle 설치에 따른 음향공진)

  • Bang, Kyung-Bo;Kim, Cheol-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.178-183
    • /
    • 2004
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a large fossil power plant. The phenomena of acoustic resonance may arise when the vortex shedding frequency coincides with the acoustic natural frequency. In this system dominant frequency of vibration and noise was 37.5Hz. The $3^{rd}$ acoustic natural frequency calculated was 37.2 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance could occur. If system is the state of acoustic resonance, vibration and noise become large. In order to prevent acoustic resonance, anti-noise baffle should be installed in the tube bank. In the case of installing baffle, we should consider the number of baffle and the effect of acoustic mode due to baffle extension length. To do this, we did acoustic mode analysis. After installing anti-noise baffle, acoustic resonance was disappeared and vibration magnitude and noise level was reduced dramatically.

  • PDF

A Case Study on the vibration and noise by acoustic resonance in the tube bank of a boiler of 75MW power plant (75MW 급 발전용 보일러 관군에서의 음향공진에 의한 진동/소음 사례연구)

  • Kim, Cheol-Hong;Bang, Kyung-Bo;Ju, Young-Ho;Byun, Hyung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.150-155
    • /
    • 2000
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a power plant. Acoustic resonance is may arise when the vortex shedding frequency coincides with the acoustic natural frequency. At the resonance, the value of vibration in this system was 595 ${\mu}m$, p-p and the sound pressure level was maximum 103 dBA. And the resonance frequency was found to be 35 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance is possible. In this system, the difference of these frequencies was 1.8%. We can evaluate the possibility of acoustic resonance by using damping parameter. We did eliminate acoustic resonance by installing baffle in tube bank. After installing baffle, the level of vibration and noise was reduced dramatically.

  • PDF

A New Approach to Load Shedding Prediction in GECOL Using Deep Learning Neural Network

  • Abusida, Ashraf Mohammed;Hancerliogullari, Aybaba
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.220-228
    • /
    • 2022
  • The directed tests produce an expectation model to assist the organization's heads and professionals with settling on the right and speedy choice. A directed deep learning strategy has been embraced and applied for SCADA information. In this paper, for the load shedding expectation overall power organization of Libya, a convolutional neural network with multi neurons is utilized. For contributions of the neural organization, eight convolutional layers are utilized. These boundaries are power age, temperature, stickiness and wind speed. The gathered information from the SCADA data set were pre-handled to be ready in a reasonable arrangement to be taken care of to the deep learning. A bunch of analyses has been directed on this information to get a forecast model. The created model was assessed as far as precision and decrease of misfortune. It tends to be presumed that the acquired outcomes are promising and empowering. For assessment of the outcomes four boundary, MSE, RMSE, MAPE and R2 are determined. The best R2 esteem is gotten for 1-overlap and it was 0.98.34 for train information and for test information is acquired 0.96. Additionally for train information the RMSE esteem in 1-overlap is superior to different Folds and this worth was 0.018.

Development of Algorithm to Detect Load Shedding Using Wavelet Singular Value Decomposition (Wavelet Singular Value Decomposition을 이용한 부하 탈락 검출 알고리즘 개발)

  • Han, Jun;Kim, Won-Ki;Lee, Jae-Won;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.244-245
    • /
    • 2011
  • In this paper, the algorithm for detecting load shedding based on Wavelet Singular Value Decomposition(WSVD) is proposed. WSVD is method of signal processing which combine Wavelet Transform(WT) and Singular Value Decomposition(SVD) to analyze transients in power system. 345kV Busan transmission system is modeled by EMTP-RV and simulations according to successive change of load capability are conducted. This paper analyzes characteristics of WSVD by using simulation results and proposes algorithm for detecting load shedding.

  • PDF

A Study on Operation Scheme of STS with Emergency Generator for Peak Shedding (첨두부하 저감을 위한 비상발전기 연계형 STS 운영 방안에 관한 연구)

  • Kim, Chang-Hwan;Rhee, Sang-Bong;Kim, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.155-156
    • /
    • 2015
  • Recently, electricity consumption has rapidly increased along with economic growth. The operating strategy using emergency generator is aimed, to resolve a demand response management. For strategy of peak shedding using emergency generator, it is essential to introduce the fast transfer switching device. One of the most effective solutions is to use a static transfer switch (STS) based on thyristor. However, the characteristic of natural commutated SCR thyristor should anticipate short duration voltage sag. STS system thus requires more than a quarter cycle to successfully complete transfer process. This paper proposes the operation scheme of the STS system using the forced-commutation technique to mitigate instantaneous voltage sag during peak transfer process. Proposed STS system improved turn-off characteristic thus accomplishes the peak load shedding satisfied power quality. Performance of the proposed STS system is evaluated using electromagnetic transient program (EMTP) to confirm the effectiveness.

  • PDF

OPERATION MODES ANALYSIS FOR A DVR IN DISTRIBUTION GRIDS

  • Kim, Hyo-Sung;Kim, Pederson John
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.480-483
    • /
    • 2001
  • Recent power quality measurement projects report that voltage sags are the most frequent disturbances in the sites [1]-[4]. DVRs were emerged as the best effective and economic solution for this problem [11]. This paper analyzed the power flow of a DVR in distribution grids. This paper showed various operation modes and boundaries such as inductive operation, capacitive operation, and minimal power operation beside the in-phase compensation.

  • PDF

Voltage Stability Constrained Optimal Power Flow based on Successive Linear Programming (전압안정도를 고려한 연속선형계획법 기반 최적조류계산)

  • Bae, Seung-Chul;Shin, Yong-Son;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.220-223
    • /
    • 2003
  • This paper presents VSCOPF(Votage Stability Constrained Optimal Power Flow) algorithm based on SLP(Successive Linear Programming) to interpret the large scale system. Voltage stability index used to this paper is L index to be presented by function form. The objective function consists of load shedding cost minimization. Voltage stability indicator constraint was incorporated in traditional OPF formulation. as well as the objective function and constraints are linearlized and the optimal problem is performed by SLP(Successive Linear Programming). In this paper, the effect of voltage stability limit constraint is showed in the optimal load curtailment problems. As a result, an optimal solution is calculated to minimize load shedding cost guaranteeing voltage security level. Numerical examples using IEEE 39-bus system is also presented to illustrate the capabilities of the proposed formulation.

  • PDF

Effect of aerodynamic modifications on the surface pressure patterns of buildings using proper orthogonal decomposition

  • Tse, K.T.;Chen, Zeng-Shun;Lee, Dong-Eun;Kim, Bubryur
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.227-238
    • /
    • 2021
  • This study analyzed the pressure patterns and local pressure of tall buildings with corner modifications (recessed and chamfered corner) using wind tunnel tests and proper orthogonal decomposition (POD). POD can distinguish pressure patterns by POD mode and more dominant pressure patterns can be found according to the order of POD modes. Results show that both recessed and chamfered corners effectively reduced wind-induced responses. Additionally, unique effects were observed depending on the ratio of corner modification. Tall building models with recessed corners showed fluctuations in the approaching wind flow in the first POD mode and vortex shedding effects in the second POD mode. With large corner modification, energy distribution became small in the first POD mode, which shows that the effect of the first POD mode reduced. Among building models with chamfered corners, vortex shedding effects appeared in the first POD mode, except for the model with the highest ratio of corner modifications. The POD confirmed that both recessed and chamfered corners play a role in reducing vortex shedding effects, and the normalized power spectral density peak value of modes showing vortex shedding was smaller than that of the building model with a square section. Vortex shedding effects were observed on the front corner surfaces resulting from corner modification, as with the side surface. For buildings with recessed corners, the local pressure on corner surfaces was larger than that of side surfaces. Moreover, the average wind pressure was effectively reduced to 88.42% and 92.40% in RE1 on the windward surface and CH1 on the side surface, respectively.

Centralized Control Algorithm for Power System Performance using FACTS Devices in the Korean Power System

  • Kang, Sang-Gyun;Seo, Sang-Soo;Lee, Byong-Jun;Chang, Byung-Hoon;Myung, Ro-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.353-362
    • /
    • 2010
  • This paper presents a centralized control algorithm for power system performance in the Korean power system using Flexible AC Transmission Systems (FACTS) devices. The algorithm is applied to the Korean power system throughout the metropolitan area in order to alleviate inherent stability problems, especially concerns with voltage stability. Generally, control strategies are divided into local and centralized control. This paper is concerned with a centralized control strategy in terms of the global system. In this research, input data of the proposed algorithm and network data are obtained from the SCADA/EMS system. Using the full system model, the centralized controller monitors the system condition and decides the operating point according to the control objectives that are, in turn, dependent on system conditions. To overcome voltage collapse problems, load-shedding is currently applied in the Korean power system. In this study, the application of the coordination between FACTS and switch capacitor (SC) can restore the solvability without load shedding or guarantee the FV margin when the margin is insufficient. Optimal Power Flow (OPF) algorithm, for which the objective function is loss minimization, is used in a stable case. The results illustrate examples of the proposed algorithm using SCADA/EMS data of the Korean power system in 2007.