• Title/Summary/Keyword: Power Saving Algorithm

Search Result 159, Processing Time 0.026 seconds

Power Saving Algorithm based on Data Reuse in Tree Structured Wireless Sensor Networks (트리 구조 무선 센서 네트워크에서의 데이터 재사용 기반의 전력 절감 기법)

  • Lee, Sang-Hyun;Yoo, Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.649-658
    • /
    • 2009
  • Due to limited size and limited battery lifetime of sensor node, one has to address the power saving issue in wireless sensor network. The existing power saving algorithm based on data reuse was proposed for the cluster structured wireless sensor network. We state the problem of existing power saving algorithm and propose new power saving algorithm for tree structured wireless sensor network. The proposed algorithm reduces power consumption by buffering the sensed data at the selected relay node for its data lifetime. The optimum buffering node is selected so that the power saving gain is maximized and at the same time, power consumption among sensor nodes are equally distributed in the network. With computer simulations, it is shown that the proposed algorithm outperforms the conventional algorithm in terms of power saving gain.

Low Power Module selection using Genetic Algorithm (유전자 알고리듬을 사용한 저전력 모듈 선택)

  • Jeon, Jong-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.3
    • /
    • pp.174-179
    • /
    • 2007
  • In this paper, we present a optimal module selection using genetic algorithm under the power, area, delay constraint. The proposed algorithm use the way of optimal module selection it will be able to minimize power consumption. In the comparison and experimental results, The proposed application algorithm reduce maximum power saving up to 26.9% comparing to previous non application algorithm, and reduce minimum power saving up to 9.0%. It also show the average power saving up to 15.525% and proved the power saving efficiency.

  • PDF

Dynamically Alternating Power Saving Scheme for IEEE 802.16e Mobile Broadband Wireless Access Systems

  • Chang, Jau-Yang;Lin, Yu-Chen
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.179-187
    • /
    • 2012
  • Power saving is one of the most important features that extends the lifetime of portable devices in mobile wireless networks. The IEEE 802.16e mobile broadband wireless access system adopts a power saving mechanism with a binary truncated exponent algorithm for determining sleep intervals. When using this standard power saving scheme, there is often a delay before data packets are received at the mobile subscriber station (MSS). In order to extend the lifetime of a MSS, the battery energy must be used efficiently. This paper presents a dynamically alternating sleep interval scheduling algorithm as a solution to deal with the power consumption problem. We take into account different traffic classes and schedule a proper sequence of power saving classes. The window size of the sleep interval is calculated dynamically according to the packet arrival rate. We make a tradeoff between the power consumption and packet delay. The method achieves the goal of efficiently reducing the listening window size, which leads to increased power saving. The performance of our proposed scheme is compared to that of the standard power saving scheme. Simulation results demonstrate the superior performance of our power saving scheme and its ability to strike the appropriate performance balance between power saving and packet delay for a MSS in an IEEE 802.16e mobile broadband wireless access system.

An New Load Control Algorithms based on Power Consumption (전력사용량 기반의 새로운 부하제어 알고리즘)

  • Kim, Jeong-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1658-1662
    • /
    • 2010
  • This paper presents an advanced energy saving algorithm in building. It is important to aggregate a various demand side resource which is surely controllable at the peak power time to reduce the energy cost. Previous demand side algorithm appropriate for building is based on peak power. In this paper, we develop the new energy saving algorithm to reduce the quantity of power consumption. The simulation results show that the proposed tem is very effective.

Joint Power-Saving and Routing Algorithm for Lifetime Maximization in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 생존시간 최대화를 위한 전력절감과 라우팅 결합 알고리즘)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2826-2834
    • /
    • 2013
  • In mobile ad hoc networks (MANET), power-saving technology of mobile nodes is divided into transmit power control (TPC), power-saving mode (PSM), and routing. TPC and PSM are operated in physical layer but the routing is managed in network layer, so the design of a joint algorithm is needed to provide better performance. Therefore, in this paper, we propose a joint power-saving and routing algorithm for maximizing the network lifetime while satisfying the end-to-end data rate in ad hoc networks. The proposed algorithm first applies the TPC or PSM to reduce the power consumption of mobile nodes and then performs the routing by considering the decided node lifetime in order to maximize the path lifetime. Simulation results show that the proposed algorithm maximize the lifetime while satisfying the required rate according to the number of mobile nodes and the level of interference.

Power Saving Algorithm based on Long-term Sleep Period for RFID/USN systems (RFID/USN 시스템 지원을 위한 장기간 수면 기반의 전력 절감 알고리즘)

  • Kang, Yu-Chol;Hwang, Jun-Ho;Yoo, Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1426-1434
    • /
    • 2009
  • RFID/USN is considered as a key convergence technology in future ubiquitous network. In RFID/USN, the power saving issue receives a great attention due to limited battery lifetime of sensor node. In this paper, we propose a new power saving algorithm, which takes advantage of long-term sleep period. To provide a full network connectivity and balance the battery consumption among sensor nodes, the proposed algorithm intelligently selects the long-term sleep sensor nodes. With mathematical analysis and simulations, we prove that the proposed algorithm can significantly reduce the power consumption of sensor nodes as compared to existing algorithms.

Design and Performance Analysis of a Traffic-based Power Saving Mode Decision Algorithm for Energy-efficient Home Networks (에너지 효율적인 홈 네트워크를 위한 트래픽 기반 전력 절감 모드 결정 알고리즘의 설계 및 성능 분석)

  • Kong, In-Yeup;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.10
    • /
    • pp.1392-1402
    • /
    • 2008
  • Home gateway is always full-powered for ubiquitous home services, and consumes much energy yearly. Power-saving algorithm to conserve this energy must reduce the energy consumption and preserve always-on services. Our algorithm predicts current idle period using the history of the past idle period when the idle period starts, and then determines whether the power mode is changed to the saving mode or not. On the power saving mode, it processes the simple protocol data for network control using proxying with no wakeup. And it changes the power mode to active mode when user's traffic exists. As the results of the simulation using real traffic, our algorithm saves the energy consumption from 14% to 49% as compared with existing method.

  • PDF

Building AHU Load Control Algorithm based on Demand Response (DR 기반의 건물 공조 부하관리 알고리즘)

  • Kim, Jeong-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1225-1228
    • /
    • 2011
  • This paper presents an advanced energy saving algorithm in building. It is important to aggregate a various demand side resource which is controllable on demand response environment. Previous demand side algorithm for building is restricted on peak power. In this paper, we suggest duty cycle algorithm for AHU on demand response to reduce the quantity of building power consumption. The test results show that the proposed algorithm is very effective.

Efficient Power-Saving 10-Gb/s ONU Using Uplink Usage-Dependent Sleep Mode Control Algorithm in WDM-PON

  • Lee, Han Hyub;Kim, Kwangok;Lee, Jonghyun;Lee, Sangsoo
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.253-258
    • /
    • 2013
  • We propose and demonstrate an efficient power-saving optical network unit (ONU) based on upstream traffic monitoring for 10-Gb/s wavelength division multiplexed passive optical networks (WDM-PONs). The power-saving mode controller uses a ${\mu}$-processor and traffic monitoring modules followed by the proposed power-saving processes to operate the sleep mode ONU. The power consumption of the ONU is effectively reduced from 19.3 W to 6.4 W when no traffic from the users is detected. In addition, we design a power-saving mechanism based on a cyclic sleep mode operation to allow a connectivity check between the optical line terminal and ONU. Our calculation results show that the WDM-PON ONU reduces the power consumption by around 60% using the proposed mechanism.

The Energy Saving for Separately Excited DC Motor Drive via Model Based Method

  • Udomsuk, Sasiya;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.470-479
    • /
    • 2016
  • The model based method for energy saving of the separately excited DC motor drive system is proposed in the paper. The accurate power loss model is necessary for this method. Therefore, the adaptive tabu search algorithm is applied to identify the parameters in the power loss model. The field current values for minimum power losses at any load torques and speeds are calculated by the proposed method. The rule based controller is used to control the field current and speed of the motor. The experimental results confirm that the model based method can successfully provide the energy saving for separately excited DC motor drive. The maximum value of the energy saving is 48.61% compared with the conventional drive method.