• Title/Summary/Keyword: Power Resistor

Search Result 415, Processing Time 0.018 seconds

1V 1.6-GS/s 6-bit Flash ADC with Clock Calibration Circuit (클록 보정회로를 가진 1V 1.6-GS/s 6-bit Flash ADC)

  • Kim, Sang-Hun;Hong, Sang-Geun;Lee, Han-Yeol;Park, Won-Ki;Lee, Wang-Yong;Lee, Sung-Chul;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1847-1855
    • /
    • 2012
  • A 1V 1.6-GS/s 6-bit flash analog-to-digital converter (ADC) with a clock calibration circuit is proposed. A single track/hold circuit with a bootstrapped analog switch is used as an input stage with a supply voltage of 1V for the high speed operation. Two preamplifier-arrays and each comparator composed of two-stage are implemented for the reduction of analog noises and high speed operation. The clock calibration circuit in the proposed flash ADC improves the dynamic performance of the entire flash ADC by optimizing the duty cycle and phase of the clock. It adjusts the reset and evaluation time of the clock for the comparator by controlling the duty cycle of the clock. The proposed 1.6-GS/s 6-bit flash ADC is fabricated in a 1V 90nm 1-poly 9-metal CMOS process. The measured SNDR is 32.8 dB for a 800 MHz analog input signal. The measured DNL and INL are +0.38/-0.37 LSB, +0.64/-0.64 LSB, respectively. The power consumption and chip area are $800{\times}500{\mu}m2$ and 193.02mW.

Analysis on PD Pulse Distribution by Defects Depending on SF6 Pressure (SF6 압력에 따른 결함별 부분 방전 펄스의 분포 분석)

  • Kim, Sun-Jae;Jo, Hyang-Eun;Jeong, Gi-Woo;Kil, Gyung-Suk;Kim, Sung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.40-45
    • /
    • 2015
  • Electrode systems: a protrusion on conductor (POC), a protrusion on enclosure (POE), a crack in epoxy plate and a free particle (FP) were fabricated to simulate insulation defects in a gas insulated switchgear (GIS). $SF_6$ gas was filled in the electrode systems by 3 bar and/or 5 bar, respectively. Partial discharge (PD) pulses were detected through a $50{\Omega}$ non-inductive resistor. A calibration test was carried out according to IEC 60270, and the sensitivity was 0.25 pC/mV. PD pulses were distributed in the phase of $50^{\circ}{\sim}135^{\circ}$ and over 95% of them existed in the phase of $55^{\circ}{\sim}120^{\circ}$ for the POC. PD pulses were distributed in the phase of $230^{\circ}{\sim}310^{\circ}$ and over 90% of them existed in phase of $220^{\circ}{\sim}300^{\circ}$ for the POE. PD pulses occurred in the phase of $40^{\circ}{\sim}60^{\circ}$ and $220^{\circ}{\sim}300^{\circ}$ for the crack, and pulse counts were 25% higher in negative polarity than in positive polarity. PD pulses were distributed in every phase unlike to other three electrode systems and the peak magnitude was measured at $118^{\circ}$ and $260^{\circ}$ for the FP. As described above, PD pulses were observed in positive polarity for the POC, in negative one for the POE, in both one for the crack and the FP. In conclusion, it is expected that the identification rate of defect type can be improved by considering the polarity ratio of PD pulses on the PRPDA method.

Design of an 1.8V 8-bit 500MSPS Cascaded-Folding Cascaded-Interpolation CMOS A/D Converter (1.8V 8-bit 500MSPS Cascaded-Folding Cascaded-Interpolation CMOS A/D 변환기의 설계)

  • Jung Seung-Hwi;Park Jae-Kyu;Hwang Sang-Hoon;Song Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.5 s.347
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, an 1.8V 8-bit 500MSPS CMOS A/D Converter is proposed. In order to obtain the resolution of 8bits and high-speed operation, a Cascaded-Folding Cascaded-Interpolation type architecture is chosen. For the purpose of improving SNR, Cascaded-folding Cascaded-interpolation technique, distributed track and hold are included [1]. A novel folding circuit, a novel Digital Encoder, a circuit to reduce the Reference Fluctuation are proposed. The chip has been fabricated with a $0.18{\mu}m$ 1-poly 5-metal n-well CMOS technology. The effective chip area is $1050{\mu}m{\times}820{\mu}m$ and it dissipates about 146mW at 1.8V power supply. The INL and DNL are within ${\pm}1LSB$, respectively. The SNDR is about 43.72dB at 500MHz sampling frequency.

A Variable-Gain Low-Voltage LNA MMIC Based on Control of Feedback Resistance for Wireless LAN Applications (피드백 저항 제어에 의한 무선랜용 가변이득 저전압구동 저잡음 증폭기 MMIC)

  • Kim Keun Hwan;Yoon Kyung Sik;Hwang In Gab
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1223-1229
    • /
    • 2004
  • A variable-gain low-voltage low noise amplifier MMIC operating at 5GHz frequency band is designed and implemented using the ETRI 0.5$\mu\textrm{m}$ GaAs MESFET library process. This low noise amplifier is designed to have the variable gain for adaptive antenna array combined in HIPERLAN/2. The feedback circuit of a resistor and channel resistance controlled by the gate voltage of enhancement MESFET is proposed for the variable-gain low noise amplifier consisted of cascaded two stages. The fabricated variable gain amplifier exhibits 5.5GHz center frequency, 14.7dB small signal gain, 10.6dB input return loss, 10.7dB output return loss, 14.4dB variable gain, and 2.98dB noise figure at V$\_$DD/=1.5V, V$\_$GGl/=0.4V, and V$\_$GG2/=0.5V. This low noise amplifier also shows-19.7dBm input PldB, -10dBm IIP3, 52.6dB SFDR, and 9.5mW power consumption.

Active-RC Channel Selection Filter with 40MHz Bandwidth and Improved Linearity (개선된 선형성을 가지는 R-2R 기반 5-MS/s 10-비트 디지털-아날로그 변환기)

  • Jeong, Dong-Gil;Park, Sang-Min;Hwang, Yu-Jeong;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.149-155
    • /
    • 2015
  • This paper proposes 5-MS/s 10-bit digital-to-analog converter(DAC) with the improved linearity. The proposed DAC consists of a 10-bit R-2R-based DAC, an output buffer using a differential voltage amplifier with rail-to-rail input range, and a band-gap reference circuit for the bias voltage. The linearity of the 10-bit R-2R DAC is improved as the resistor of 2R is implemented by including the turn-on resistance of an inverter for a switch. The output voltage range of the DAC is determined to be $2/3{\times}VDD$ from an rail-to-rail output voltage range of the R-2R DAC using a differential voltage amplifier in the output buffer. The proposed DAC is implemented using a 1-poly 8-metal 130nm CMOS process with 1.2-V supply. The measured dynamic performance of the implemented DAC are the ENOB of 9.4 bit, SNDR of 58 dB, and SFDR of 63 dBc. The measured DNL and INL are less than +/-0.35 LSB. The area and power consumption of DAC are $642.9{\times}366.6{\mu}m^2$ and 2.95 mW, respectively.