• Title/Summary/Keyword: Power Regulator

Search Result 496, Processing Time 0.021 seconds

A Design of Wide-Bandwidth LDO Regulator with High Robustness ESD Protection Circuit

  • Cho, Han-Hee;Koo, Yong-Seo
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1673-1681
    • /
    • 2015
  • A low dropout (LDO) regulator with a wide-bandwidth is proposed in this paper. The regulator features a Human Body Model (HBM) 8kV-class high robustness ElectroStatic Discharge (ESD) protection circuit, and two error amplifiers (one with low gain and wide bandwidth, and the other with high gain and narrow bandwidth). The dual error amplifiers are located within the feedback loop of the LDO regulator, and they selectively amplify the signal according to its ripples. The proposed LDO regulator is more efficient in its regulation process because of its selective amplification according to frequency and bandwidth. Furthermore, the proposed regulator has the same gain as a conventional LDO at 62 dB with a 130 kHz-wide bandwidth, which is approximately 3.5 times that of a conventional LDO. The proposed device presents a fast response with improved load and line regulation characteristics. In addition, to prevent an increase in the area of the circuit, a body-driven fabrication technique was used for the error amplifier and the pass transistor. The proposed LDO regulator has an input voltage range of 2.5 V to 4.5 V, and it provides a load current of 100 mA in an output voltage range of 1.2 V to 4.1 V. In addition, to prevent damage in the Integrated Circuit (IC) as a result of static electricity, the reliability of IC was improved by embedding a self-produced 8 kV-class (Chip level) ESD protection circuit of a P-substrate-Triggered Silicon Controlled Rectifier (PTSCR) type with high robustness characteristics.

A Study of Quasi-Resonant Flyback Power Supply with Very Wide Input Voltage (광범위 입력전압을 갖는 준공진형 플라이백 파워서플라이의 연구)

  • Lee, Yong-Geun;La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.143-145
    • /
    • 2015
  • One of the many problems besetting the converter designer is being able to design a switching power supply that can operate in the range of very wide input voltage. Specially, in an emergency diesel generator system, the AVR(Automatic Voltage Regulator) is a regulator which regulates the output voltage of the generator at a nominal constant voltage level. In addition, the AVR must be operated in very wide input voltage. Therefore, a power supply for the AVR must be operated at the very wide input voltage range. In this paper, a quasi-resonant flyback power supply with very wide input voltage range is proposed. Also, the performance of the proposed power supply is demonstrated through experiments.

A Power Supply System for Lighting of Aerodromes by Using Power Factor Correction and Constant Current Regulator (PFC 및 CCR에 의한 항공조명용 전원공급장치의 개발)

  • Shon, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2150-2156
    • /
    • 2007
  • According as level of industry develops day after day, electricity load system of industry requires high level control, effectiveness and high efficiency. Among supply and control unit of suitable power supply in these load characteristic, inverter systems of constant current regulate is used widely control of lighting and electric heating system. But, problems that power factor deterioration and fast response of control, efficiency, harmonics and etc are still remain. Therefore, in this paper proposed an inverter systems with constant current regulation and power factor correction (PFC) circuit for lighting and beaconing of aerodromes. The effectiveness of the proposed system confirmed through experimental results of 10[kW] power supply system.

Suppression of Leakage Current and Distortion in Variable Capacitance Devices and their Application to AC Power Regulators

  • Katsuki, Akihiko;Oki, Takuya
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • The quantity of alternating current (AC) leakage and the value of distortion factor in capacitor currents are discussed with regard to a new power component called variable capacitance device (VCD). This component has terminals for controlling its capacitance. Nonlinear dielectric characteristics are utilized in this device to vary the capacitance. When VCD operates in an AC circuit, the AC leakage from this device through direct current (DC) control voltage source increases according to the conditions of DC control voltage and so on. To solve this problem, we propose techniques for suppressing AC leakage. Although VCD has strong nonlinear characteristics, the current through the capacitor is not distorted significantly. The relations between AC leakage and the distortion in current waveforms are investigated. An application example for an AC power regulator is also introduced to evaluate the distortion in waveforms.

A Study on the DC to DC Converter to Improve the Performance of Power LED System (파워 LED 시스템 성능개선을 위한 DC/DC 컨버터에 관한 연구)

  • Kim, Young Tae;Kim, Sei Yoon
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.85-90
    • /
    • 2022
  • In this paper, a DC converter to improve the performance of Power LED system is discussed. The mathematical model of PWM converter power stage using 3-Terminal PWM cell is introduced for power LED system. A controller for DC converter system is used as a self-tunning regulator with a recursive least-squares algorithm. Minimum variance control method is used as a control law. Experiment results verified that proposed control system could improve the performance of Power LED system.

Fuzzy 논리를 이용한 직류 전동기 regulator설계

  • 송원길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.293-301
    • /
    • 1991
  • A fuzzy regulator for the plant which is composed of CD motor and heavy load is investigated. To have good load regulation and set-point tracking performance, a velocity formed fuzzy control plus linear filter algorithm is proposed. Also a meaning reduction methodfor large inpur whichhas nocontrol rule is presented. Lastly, the performancef of linear PID regulator and fuzzycontroller is compared in terms of response time, overshoot, settling time and control power.

Digital Control for BUCK-BOOST Type Solar Array Regulator (벅-부스트 형 태양전력 조절기의 디지털 제어)

  • Yang, JeongHwan;Yun, SeokTeak;Park, SeongWoo
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.135-139
    • /
    • 2012
  • A digital controller can simply realize a complex operation algorithm and power control process which can not be applied by an analog circuit for a solar array regulator(SAR). The digital resistive control(DRC) makes an equivalent input impedance of the SAR be resistive characteristic. The resistance of the solar array varies largely in a voltage source region and slightly in a current source region. Therefore when the solar array regulator is controlled by the DRC, the Advanced Incremental Conductance MPPT Algorithm with a Variable Step Size(AIC-MPPT-VSS) is suitable. The AIC-MPPT-VSS, however, using small signal resistance and large signal resistance of the solar array can not limit the absolute value of the solar array power. In this paper, the solar array power limiter is suggested and the BUCK-BOOST type SAR which is fully controlled by the digital controller is verified by simulation.

Design of a Low Drop-out Regulator with a UVLO Protection Function (UVLO 보호기능이 추가된 LDO 레귤레이터 설계)

  • Park, Won Kyeong;Lee, Su Jin;Park, Yong Su;Song, Han Jung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.239-244
    • /
    • 2013
  • This paper presents a design of the CMOS LDO regulator with a UVLO protection function for a high speed PMIC. Proposed LDO regulator circuit consists of a BGR reference circuit, an error amplifier and a power transistor and so on. UVLO block between the power transistor and the power supply is added for a low input protection function. Also, UVLO block showed normal operation with turn-off voltage of 2.7V and turn-on voltage of 4 V in condition of 5 V power supply. Proposed circuit generated fixed 3.3 V from a supply of 5V. From SPICE simulation results using a $1{\mu}m$ high voltage CMOS technology, simulation results were 5.88 mV/V line regulation and 27.5 uV/mA load regulation with load current 0 mA to 200 mA.

Resistive Current Mode Control for the Solar Array Regulator of SPACE Power System (인공위성 시스템을 위한 태양전지 전력조절기의 저항제어)

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.535-542
    • /
    • 2006
  • A large signal stability analysis of the solar array regulator system is performed to facilitate the design and analysis of a Low-Earth-Orbit satellite power system. The effective load characteristics of every controllable method in the solar array system are classified to analyze the large signal stability. Then, using the state plane analysis technique, the stability of various equilibrium points is analyzed. A nonlinear transformation algorithm, which changes the effective load characteristic of the solar array regulator as constant resistive load, is also proposed for the large signal stability. The proposed resistive current mode control system can control the solar array output for purposes such as peak power tracking control and battery charging control. For the verification of the proposed large signal analysis and resistive current mode control, a solar array regulator system consisting of two 100W parallel module buck converters has been built and tested using a real 200W solar array.

Implementation of a Power Simulator for Energy Balance Analysis of a LEO Satellite (저궤도 위성의 에너지 균형 분석을 위한 전력 시뮬레이터의 구현)

  • Jeon, Moon-Jin;Lee, Na-Young;Kim, Day-Young;Kim, Gyu-Sun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.176-184
    • /
    • 2010
  • The power simulator for a LEO satellite is a useful tool to analyze mission validity and energy balance for various mission scenarios by estimating power generation, power consumption, depth of discharge, bus voltage, charging/discharging current, etc. In this paper, it is described the calculation algorithm of the solar array (SA) power, the satellite load power and the battery modeling method to develop a satellite power simulation. To simulate the SA power generation, three different operation modes (DET, MPPT, CV) of SAR (Solar Array Regulator) are considered with a SA model. The satellite load power is estimated using the satellite unit power database, the unit on/off configuration at some satellite operation modes. The bus voltage and battery charging/discharging current at the specific DoD (Depth of Discharge) are calculated based on the battery characteristics. By this satellite power simulator, it can be conveniently analyzed the energy balance and the validity of a planned mission of a LEO satellite.