• Title/Summary/Keyword: Power Overshoot

Search Result 151, Processing Time 0.03 seconds

Design of DC-DC Boost Converter with RF Noise Immunity for OLED Displays

  • Kim, Tae-Un;Kim, Hak-Yun;Baek, Donkyu;Choi, Ho-Yong
    • Journal of Semiconductor Engineering
    • /
    • v.3 no.1
    • /
    • pp.154-160
    • /
    • 2022
  • In this paper, we design a DC-DC boost converter with RF noise immunity to supply a stable positive output voltage for OLED displays. For RF noise immunity, an input voltage variation reduction circuit (IVVRC) is adopted to ensure display quality by reducing the undershoot and overshoot of output voltage. The boost converter for a positive voltage Vpos operates in the SPWM-PWM dual mode and has a dead-time controller using a dead-time detector, resulting in increased power efficiency. A chip was fabricated using a 0.18 um BCDMOS process. Measurement results show that power efficiency is 30% ~ 76% for load current range from 1 mA to 100 mA. The boost converter with the IVVRC has an overshoot of 6 mV and undershoot of 4 mV compared to a boost converter without that circuit with 18 mV and 20 mV, respectively.

An Improved Turn-Off Gate Control Scheme for Series Connected IGBTs (IGBT 직렬 연결을 위한 턴-오프 게이트 구동기법)

  • 김완중;최창호;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.99-104
    • /
    • 1999
  • The large scale industry needs high voltage converters. Therefore series connection of power semiconductor devices is necessary. It is important to prevent the overvoltage from being induced across a device above ratings by the proper voltage balancing in the field of IGBT series connection. In addition, the overvoltage induced by a stray inductance has to be limited in the high power circuit. This paper proposes a new gate control scheme which can balance the voltage properly and limit the overshoot by controlling the slope of collector voltage under the turn-off transient in the series connected IGBTs. The proposed gate control scheme which senses the collector voltage and controls the gate signal actively limits the overvoltage. The new series connected IGBT gate driver is made and its validity is verified by the experimental results in the series connected IGBT circuit.

Power Control Design and Application to Research Reactor (연구용 원자로의 출력제어기법 설계 및 적용사례)

  • Baang, Dane;Lee, Jongbok;Suh, Yongsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.215-220
    • /
    • 2014
  • Study and application result of power controller to research reactor is presented. Considering safety-oriented design concept and other control environment, we developed a simple closed-loop controller that provides limiting function of power-change-rate as well as low-overshoot and fine tracking performance. The design result has been well-proven via simulation and actual application to a research reactor.

LDO Regulator with Improved Transient Response Characteristics and Feedback Voltage Detection Structure (Feedback Voltage Detection 구조 및 향상된 과도응답 특성을 갖는 LDO regulator)

  • Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.313-318
    • /
    • 2022
  • The feedback voltage detection structure is proposed to alleviate overshoot and undershoot caused by the removal of the existing external output capacitor. Conventional LDO regulators suffer from overshoot and undershoot caused by imbalances in the power supply voltage. Therefore, the proposed LDO is designed to have a more improved transient response to form a new control path while maintaining only the feedback path of the conventional LDO regulator. A new control path detects overshoot and undershoot events in the output stage. Accordingly, the operation speed of the pass element is improved by charging and discharging the current of the gate node of the pass element. LDO regulators with feedback voltage sensing architecture operate over an input voltage range of 3.3V to 4.5V and have a load current of up to 200mA at an output voltage of 3V. According to the simulation result, when the load current is 200mA, it is 73mV under the undershoot condition and 61mV under the overshoot condition.

Improved Dual Closed-loops PWM Control of PM DC Servomotor - a Case Study of Undergraduate Education for Electrical Engineering

  • Cao, Hongtai
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.374-378
    • /
    • 2014
  • PID control method usually has problems of overshoot and oscillation in high order control system, therefore, it is important to improve the control method so as to reduce the overshoot and oscillation. Based on MATLAB simulation, a permanent magnet (PM) DC servomotor control system is studied in this paper. The motor is modeled according to the universal motor theory, and with the help of the fourth order Ronge-Kutta method, its speed control is simulated and compared between two different dual closed-loops PWM control methods. This case study helps undergraduate students to better understand theories related to electrical engineering, such as electrical machinery, power electronics and control theory, as well as digital solution of state equations.

Improved RRS Logical Architecture using Genetic Algorithm (유전자 알고리즘 적용을 통한 향상된 RRS Logic 개발)

  • Shim, Hyo Sub;Jung, Jae Chun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.115-125
    • /
    • 2016
  • An improved RRS (Reactor Regulating System) logic is implemented in this work using systems engineering approach along with GA (Genetic Algorithm) deemed as providing an optimal solution to a given system. The current system works desirably and has been contributed to the safe and stable NPP operation. However, during the ascent and decent section of the reactor power, the RRS output reveals a relatively high steady state error and the output also carries a considerable level of overshoot. In an attempt to consolidate conservatism and minimize the error, this research proposes applying genetic algorithm to RRS and suggests reconfiguring the system. Prior to the use of GA, reverse-engineering is implemented to build a Simulink-based RRS model and re-engineering is followed to apply the GA and to produce a newly-configured RRS generating an output that has a reduced steady state error and diminished overshoot level.

Anti-windup IP Controller for Motor Drives (전동기 구동을 위한 반포화 적분-비례 제어기 설계)

  • 박종규;손병성;유치밍;이순영;신휘범
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.80-83
    • /
    • 1999
  • The windup phenomenon appears and results in performance degradation such as large overshoot, slow settling time when the integral-proportional (IP) controller output is saturated. An anti-windup IP controller is proposed to improve the control performance for the motor drives. The proposed algorithm is applied to the current control of a vector-controlled induction motor driven by a pulse width modulated(PWM) voltage-source inverter. The integral state is separately controlled corresponding to whether the IP controller output is saturated or not. The experimental results show that the current response has much improved performance such as little overshoot and fast settling time.

  • PDF

Anti-Windup Strategy of PI Controller without Overshoot (오버슈터 없는 PI 제어기의 Anti-Windup 기법)

  • Yun, Won-Eel;Choi, Jong-Woo;Kim, Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.538-541
    • /
    • 2005
  • Most realistic control systems contain nonlinearities of some form. One nonlinearity commonly found in control systems is a saturating element. If integral control is applied to such a system to eliminate steady state error, an undesired side effect known as integrator windup may occur when lage setpoint changes are made. This effect leads to a characteristic step response with a large overshoot and a very high settling time. To avoid this situation, many different anti-windup strategies have been suggested. But existing strategies remain over shoot and high settling time. This paper proposes a new anti-windup strategy for PI speed controllers. When the speed control system is changed P controller to PI controller. Integrator has an appropriate initial value. This value results over shoot and high settling time. The SIMULINK/MATLAB-based comparative simulation results and experiment results of speed controller have shown its superior control performance to that of a proposed anti-windup speed controller.

  • PDF

A New Current Controller for PWM Converters (PWM Converter의 새로운 전류제어기)

  • Lee, J.W.;Min, J.J.;Baek, S.K.;Kang, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.410-412
    • /
    • 1995
  • From the cost-effective product point of view, it is very important to design a new current controller with the highest utilization factor of current capacity of power devices. This paper deals with a state-deadbeat current controller for PWM converters, which shows the fastest current control response without overshoot irrespective of the saturation of control voltage. No-overshoot control response means that the current capacity could be fully utilized in the control sense. Simulational results done by Matlab's Simulink show good current control characteristics.

  • PDF

Computer Aided Bondgraphs Modeling and Simulation of Hydrostatic Transmission (유압 트랜스미션의 본드선도 모델링 및 시뮬레이션)

  • Woo, Seongwoo;Park, Raeseok;Lee, Jongkil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.54-62
    • /
    • 1996
  • To get the time response characteristics of the hydrostatic transmission, seaborne winch is modelde by using bond graphs. After modeling of its basic elements, it is represented as power flow, and the determination of variable causality. The state equations are derived by using CAMP. As dynamic stabilites and solutions are investigated by perturbation method and direct integration, winch system is stable. Simulations are performed under the conditions of low speed, high speed, and maximum tension. The pressure and flow rate of the hydrostatic transmission have a big overshoot. But when it is comparaed to the empirical data with simulation results, it is similar to each other. When a lead compensator is applied to improve response characteristics of the hydrostatic transmission, rise time and overshoot of the system are improved.

  • PDF