• Title/Summary/Keyword: Power Oscillator

Search Result 571, Processing Time 0.03 seconds

A Very Low Phase Noise Oscillator with Double H-Shape Metamaterial Resonator (이중 H자 메타 전자파구조를 이용한 저위상잡음 발진기)

  • Lee, Chong-Min;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.62-66
    • /
    • 2010
  • In this article, a oscillator at X-band with a double H-shape metamaterial resonator (DHMR) based on high-Q is proposed with metamaterial structure to improve Ihe phase noise and output power. The proposed oscillator is required low phase noise and high output power for the high performance frequency synthesizer. DHMR is designed to be high-Q at resonance frequency through strong coupling of E-field. This character makes phase noise excellent. The oscillator using DHMR is oscillated in X-band so as to apply frequency synthesizer of radar systems. The output power is 4.33 dBm and the phase noise is -108 dBc/Hz at 100 kHz offset of carrier frequency.

Investigation on the Output Power Improvement of Push-Push FET DRO with an Additional DR (Push-Push FET DRO에 부가된 유전체 공진기의 전력 증강 역할에 관한 분석)

  • 박승욱;김인석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1170-1175
    • /
    • 2003
  • In this paper, the output power improvement of Push-Push FET DRO by adding the identical DR at the drain port as one used in the gate port, has been theoretically investigated. The investigation shows that the DR located between two microstrip lines locks the phase difference of two FET's outputs at 180 degree and improves the output power of Push-Push FET DRO. Since this effect can be used for correcting the impedance difference between two FETs output circuits and the electrical length error of the power combiner at the output circuit of Push-Push DRO, which may occur when fabricate the oscillator, the oscillator with an additional DR can be useful structure for fabricating oscillator.

Fabrication and Identification of Marx Generator for the Design of High Power Backward Wave Oscillator (대 전력 후진파 발진기의 설계를 위한 마르크스 발생기의 제작 및 검증)

  • Kim, Won-Seop;Hwang, Nak-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.391-399
    • /
    • 1999
  • We have designed the backward wave oscillator, a power-pulsed generator oscillated at 20 GHz has higher frequency than current one. An absolute instability linear analysis was used for the purpose of designing the slow wave structure. A large diameter (D/$\lambda$=4.8) of the slow wave structure was adopted to prevent the breakdown brought about by the increase of power density. We have fabricated a marx generator, pulse forming line and diode. And the development of a compact pulsed power generator with short period and low amplitude is expected.

  • PDF

A Study of Development and Application with High Power Electron Beam (대전력 전자 빔의 개발 및 응용에 관한 연구)

  • Kim, Won-Sop;Kim, Jong-Man;Kim, Kyung-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.169-173
    • /
    • 2003
  • In this paper, we present a design and experiment study of high power large diameter backward wave oscillator. Analysis is made within the scope of linear theory of absolute instibility. The Electron beam generator may be atteractive source of high power millimeter microwaves which has simpler structure.

  • PDF

Picosecond Mid-Infrared 3.8 ㎛ MgO:PPLN Optical Parametric Oscillator Laser with High Peak Power

  • Chen, Bing-Yan;Wang, Yu-Heng;Yu, Yong-Ji;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.186-190
    • /
    • 2021
  • In this study, a compact, picosecond, mid-infrared 3.8 ㎛ MgO:PPLN optical parametric oscillator (OPO) laser output with high peak power is realized using a master oscillator power amplifier (MOPA) 1 ㎛ solid-state laser seeded by a picosecond fiber laser as the pump source. The pump source was a 50 MHz and 10 ps fiber seed source. After AOM pulse selection and two-stage solid-state amplification, a 1,064 nm laser output with a repetition frequency of 1-2 MHz, pulse width of 9.5 ps, and a maximum average power of 20 W was achieved. Furthermore, a compact short cavity with a unsynchronized pump is adopted through the design of an OPO cavity structure. When the injection pump power was 15 W and the repetition frequency was 1 MHz, the average output power of idler light was 1.19 W, and the corresponding peak power was 119 kW. The optical conversion efficiency was 7.93%. When the repetition frequency was increased to 2 MHz, the average output power of idler light was 1.63 W, the corresponding peak power was 81.5 kW, and the optical conversion efficiency was 10.87%. At the same time, the output wavelength was measured at 3,806 nm, and the beam quality was MX2 = 3.21 and MY2 = 3.34.

Fabrication of the Capacitance Controlled Active Integrated Phased Array Antenna and It's Scanning Characteristics (용량 조정형 능동 집적 배열 안테나의 제작과 방사 방향 주사 특성)

  • Choi, Young-Kyu;Nam, Beong-Geun;Shin, Sang-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1807-1813
    • /
    • 2007
  • This paper deals with extending the variable natural oscillation frequency range of an active integrated FET oscillator. In this paper, we conform experimentally that the variable range of the natural oscillation frequency is expanded about three times in the oscillator controlled by the varactor diode. When the frequency difference is given to the oscillators in the two element antenna system, phase difference appeared between the oscillators. The 2-, 3-, 4-, 5-element patch antenna arrays are composed for the beam scanning experiments. All the above patch antennas show good phased array characteristics. The range of the scanning angle is about $30^{\circ}$, and the radiation power is gradually increased from $50{\mu}W\;to\;200{\mu}W$. The radiation patterns we sharpened as the number of elements is increased.

Study on Impedance Matching of Microwave IMPATT-Diode Oscillator (임페트 다이오드 마이크로파 발진기에서의 임피이던스 정합에 관한 연구)

  • 윤창용
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.4
    • /
    • pp.74-79
    • /
    • 1973
  • The Impcdance Matching Condition for maximum power out-pilt cf an Impact oscillator is calculated using the Van der pol's equation. From this calculation, it is found that the load impedance of the oscillator must be one half of the diode impedance for the maximum power output. To get an experimental proof for this result, tole impedance of the Impatt-diode was measured and accordingly the microwave oscillator designed and fabricated. The data obtaiped from the experiments agree fairly closely with the theoretical values.

  • PDF

Design of a Frequency Oscillator Using A Novel DGS (새로운 DGS 구조를 이용한 주파수 발진기 설계)

  • Joung, Myung-Sup;Kim, Jong-Ok;Park, Jun-Seok;Lim, Jae-Bong;Cho, Hong-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1955-1957
    • /
    • 2003
  • This paper presents a novel defected ground structure (DGS) and its application to a microwave oscillator. The presented oscillator is designed so as to use the suggested defected ground structure as a feedback loop inducing a negative resistance as well as a frequency-selective circuit. Applying the feedback loop between the drain and the gate of a FET device produces precise phase conversion in the feedback loop. The equivalent circuit parameters of the DGS are extracted by using a three-dimensional EM calculations and simple circuit analysis method. The implemented 1.07 GHz oscillator exhibits 0 dBm output power with over 15% dc-to-RF power efficiency and -106 dBc/Hz phase noise at 100 kHz offset from carrier.

  • PDF

A Photovoltaic Power Management System using a Luminance-Controlled Oscillator for USN Applications

  • Jeong, Ji-Eun;Bae, Jun-Han;Lee, Jinwoong;Lee, Caroline Sunyong;Chun, Jung-Hoon;Kwon, Kee-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.48-57
    • /
    • 2013
  • This paper presents a power management system of the dye-sensitized solar cell (DSSC) for ubiquitous sensor network (USN) applications. The charge pump with a luminance-controlled oscillator regulates the load impedance of the DSSC to track the maximum power point (MPP) under various light intensities. The low drop-out regulator with a hysteresis comparator supplies intermittent power pulses that are wide enough for USN to communicate with a host transponder even under dim light conditions. With MPP tracking, approximately 50% more power is harvested over a wide range of light intensity. The power management system fabricated using $0.13{\mu}m$ CMOS technology works with DSSC to provide power pulses of $36{\mu}A$. The duration of pulses is almost constant around $80{\mu}s$ (6.5 nJ/pulse), while the pulse spacing is inversely proportional to the light intensity.

A Design and Fabrication of a 0.18μm CMOS Colpitts Type Voltage Controlled Oscillator with a Cascode Current Source (0.18μm NMOS 캐스코드 전류원 구조의 2.4GHz 콜피츠 전압제어발진기 설계 및 제작)

  • Kim, Jong-Bum;You, Chong-Ho;Choi, Hyuk-San;Hwang, In-Gab
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2273-2277
    • /
    • 2010
  • In this paper a 2.4GHz CMOS colpitts type microwave oscillator was designed and fabricated using H-spice and Cadence Spetre. There are 140MHz difference between the oscillation frequency and the resonance frequency of a tank circuit of the designed oscillator. The difference is seemed to be due to the parasitic component of the transistor. The inductors used in this design are the spiral inductors proposed in other papers. Cascode current source was used as a bias circuit of a oscillator and the output transistor of the current source is used as the oscillation transistor. A common drain buffer amplifier was used at the output of the oscillator. The measured oscillation frequency and output power of the oscillator are 2.173GHz and -5.53dBm.