• 제목/요약/키워드: Power Model

검색결과 12,215건 처리시간 0.042초

사출성형기 유압시스템의 특성 검토를 위한 해석 모델 개발 (Development of Analysis Model for Characteristics Study of Fluid Power Systems in Injection Molding Machine)

  • 장주섭
    • 유공압시스템학회논문집
    • /
    • 제8권4호
    • /
    • pp.1-8
    • /
    • 2011
  • Injection molding machine is the assembly of many kinds of mechanical and fluid power part and electro-electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of injection molding machine are modelled and analyzed using a commercial program AMESim. The analysis model which is detailed about the parts applied a publishing catalog data. Sub system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like displacement, pressure, flow rates at each node and so on. Total fluid power circuit model is also made and analyzed. The results made by analysis will be used design of fluid power circuit of injection molding machine.

Performance Improvement of Model Predictive Control Using Control Error Compensation for Power Electronic Converters Based on the Lyapunov Function

  • Du, Guiping;Liu, Zhifei;Du, Fada;Li, Jiajian
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.983-990
    • /
    • 2017
  • This paper proposes a model predictive control based on the discrete Lyapunov function to improve the performance of power electronic converters. The proposed control technique, based on the finite control set model predictive control (FCS-MPC), defines a cost function for the control law which is determined under the Lyapunov stability theorem with a control error compensation. The steady state and dynamic performance of the proposed control strategy has been tested under a single phase AC/DC voltage source rectifier (S-VSR). Experimental results demonstrate that the proposed control strategy not only offers global stability and good robustness but also leads to a high quality sinusoidal current with a reasonably low total harmonic distortion (THD) and a fast dynamic response under linear loads.

크리깅 기법 기반 재생에너지 환경변수 예측 모형 개발 (Development of Prediction Model for Renewable Energy Environmental Variables Based on Kriging Techniques)

  • 최영도;백자현;전동훈;박상호;최순호;김여진;허진
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.223-228
    • /
    • 2019
  • In order to integrate large amounts of variable generation resources such as wind and solar reliably into power grids, accurate renewable energy forecasting is necessary. Since renewable energy generation output is heavily influenced by environmental variables, accurate forecasting of power generation requires meteorological data at the point where the plant is located. Therefore, a spatial approach is required to predict the meteorological variables at the interesting points. In this paper, we propose the meteorological variable prediction model for enhancing renewable generation output forecasting model. The proposed model is implemented by three geostatistical techniques: Ordinary kriging, Universal kriging and Co-kriging.

풍력 발전을 위한 분산형 전원전력의 단기예측 모델 설계 (Design of short-term forecasting model of distributed generation power for wind power)

  • 송재주;정윤수;이상호
    • 디지털융복합연구
    • /
    • 제12권3호
    • /
    • pp.211-218
    • /
    • 2014
  • 최근 풍력에너지는 풍력터빈의 지능화뿐만 아니라 풍력 발전량 예측 부분에서 컴퓨팅과의 결합이 확대되고 있다. 풍력 발전은 기상상태에 따라 출력변동이 심하고 출력 예측이 어려워 효율적인 전력 생산을 위해서 신재생에너지를 전력계통에 안정적으로 연계할 수 있는 기술이 필요하다. 본 논문에서는 분산형 전원의 예측정보를 향상시켜 예측한 발전량과 실제 발전량의 차이를 최소화하기 위한 분산형 전원전력의 단기예측 모델을 설계한다. 제안된 모델은 단기 예측을 위해서 물리모델과 통계모델을 결합하였으며, 물리모델에서 생산된 격자별 예측값 중 예측 지점내 예측지점의 값을 추출하고, 물리 모델 예측값에 통계모델을 적용하여 발전량 산정을 위한 최종 기상 예측값을 생성한다. 또한, 제안 모델에서는 실시간 기상청 관측자료와 실시간 중기 예측 자료를 입력 자료로 사용하여 단기 예측모델을 수행한다.

CMOS 디지털 게이트의 최대소모전력 예측 매크로 모델 (Macro-model for Estimation of Maximum Power Dissipation of CMOS Digital Gates)

  • 김동욱
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1317-1326
    • /
    • 1999
  • As the integration ratio and operation speed increase, it has become an important problem to estimate the dissipated power during the design procedure as a method to reduce the TTM(time to market). This paper proposed a prediction model to estimate the maximum dissipated power of a CMOS logic gate. This model uses a calculational method. It was formed by including the characteristics of MOSFETs of which a CMOS gate consists, the operational characteristics of the gate, and the characteristics of the input signals. As the modeling process, a maximum power estimation model for CMOS inverter was formed first, and then a conversion model to convert a multiple input CMOS gate into a corresponding CMOS inverter was proposed. Finally, the power model for inverter was applied to the converted result so that the model could be applied to a general CMOS gate. For experiment, several CMOS gates were designed in layout level by $0.6{\mu}m$ layout design rule. The result by comparing the calculated results with those from HSPICE simulations for the gates showed that the gate conversion model has within 5% of the relative error rate to the SPICE and the maximum power estimation model has within 10% of the relative error rate. Thus, the proposed models have sufficient accuracies. Also in calculation time, the proposed models was more than 30 times faster than SPICE simulation. Consequently, it can be said that the proposed model could be used efficiently to estimate the maximum dissipated power of a CMOS logic gate during the design procedure.

  • PDF

임계전류, 임계온도 및 회복시간을 고려한 초전도 전력케이블의 EMTDC 모델 컴포넌트 개발 (Development of EMTDC model component for HTS power cable considering critical current, critical temperature and recovery time)

  • 방종현;김재호;심기덕;조전욱;윤재영;박민원;유인근
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권1호
    • /
    • pp.39-44
    • /
    • 2006
  • Before applying HTS power cable to the real utility. system analysis should be carried out by some simulation tools . Hereby the electrical power system analysis is very important for practical use of HTS devices. Nowadays PSCAD/EMTDC simulation tool is one of the most popular and useful analysis tool for the electrical power system analysis. Unfortunately the model component for HTS power cable is not provided in the PSCAD/EMTDC simulation tool In this paper. the EMTDC model component for HTS power cable has been developed considering critical current, critical temperature and recovery time constant that depend on the sorts of HTS wire. The numerical model of HTS Power cable in PSCAD/EMTDC was designed by using the real experimented data obtained from the real HTS 1G wire test. The utility application analysis of HTS power cable was also performed using the developed model component and the parameters of the real utility network in this study. The author's got good results. The developed model component for HTS power cable could be variously used when the power system includes HTS power cable, especially it will be readily analyzed by PSCAD/EMTDC in order to obtain the data for the level of fault current power flow, and power losses, and so on.

PSS/E를 이용한 제주계통의 DFIG 풍력발전단지 및 HVDC 동적모델 개발 (Development of Dynamic Models for DFIG Wind Farms and HVDC in Jeju Power System Using PSS/E)

  • 남순열;강상희;남해곤;최준호
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2183-2189
    • /
    • 2011
  • Since main portion of the required electric power in Jeju Island is provided from the mainland through two HVDC lines, Jeju HVDC has a most significant impact on Jeju power system. Average wind speed of Jeju Island is the highest among several candidates in South Korea. So, Jeju Island has been a suitable site for the construction of wind farms where several wind farms are now operating and several others to be sited. Since the large-scale wind generation could have adverse impacts on the stable operation of Jeju power system, wind power is also important for the stability of Jeju power system. Therefore, accurate modeling of Jeju HVDC and wind farms is required for stability analysis of Jeju power system. In this paper, PSS/E-based dynamic modeling of Jeju HVDC and DFIG wind farms is proposed. Model-writing technique of PSS/E is used to develop USRAUX model and USRMDL model for controlling the frequency of HVDC and imposing an operation limit of wind power, respectively. Dynamic characteristics of Jeju HVDC and DFIG wind farms are analyzed through the dynamic simulations. The simulation results show the effectiveness of the developed models for Jeju power system.

Stability and Performance Investigations of Model Predictive Controlled Active-Front-End (AFE) Rectifiers for Energy Storage Systems

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.202-215
    • /
    • 2015
  • This paper investigates the stability and performance of model predictive controlled active-front-end (AFE) rectifiers for energy storage systems, which has been increasingly applied in power distribution sectors and in renewable energy sources to ensure an uninterruptable power supply. The model predictive control (MPC) algorithm utilizes the discrete behavior of power converters to determine appropriate switching states by defining a cost function. The stability of the MPC algorithm is analyzed with the discrete z-domain response and the nonlinear simulation model. The results confirms that the control method of the active-front-end (AFE) rectifier is stable, and that is operates with an infinite gain margin and a very fast dynamic response. Moreover, the performance of the MPC controlled AFE rectifier is verified with a 3.0 kW experimental system. This shows that the MPC controlled AFE rectifier operates with a unity power factor, an acceptable THD (4.0 %) level for the input current and a very low DC voltage ripple. Finally, an efficiency comparison is performed between the MPC and the VOC-based PWM controllers for AFE rectifiers. This comparison demonstrates the effectiveness of the MPC controller.

A Study on the Dynamic Reduction for Large Power System

  • Kim, Jin-Yi;Won, Dong-Jun;Moon, Seung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • 제12A권1호
    • /
    • pp.1-5
    • /
    • 2002
  • This paper presents the procedure to construct equivalent model of large power system based on nonlinear time simulation responses. It consists of coherency identification, generator aggregation and network reduction. Coherency index that can be directly implemented to this procedure is proposed. Generator aggregation based on detailed model is performed. This procedure can be used to construct equivalent model in PSS/E. It is also possible to reduce the large power system directly from the nonlinear time responses. This procedure is applied to the transient stability analysis of Korea power system that now experiences rapid changes. The equivalent model is compared with the original model in its size, accuracy, speed and performance. This paper shows that the developed equivalent model is a good estimate of the original system.

무선 통신 시스템의 전력 모델을 이용한 비트당 최소 에너지 (Minimum Energy Per Bit by Power Model in the Wireless Transceiver System)

  • 최재훈;조병각;백광훈;유흥균
    • 한국전자파학회논문지
    • /
    • 제22권12호
    • /
    • pp.1078-1085
    • /
    • 2011
  • 본 논문은 RF power model과 주파수 대역의 특성을 이용한 비트 당 에너지와 전송량과의 관계를 시스템 대역폭의 변화에 따라 분석한 논문이다. 기존에 제안된 RF power model은 각각의 디바이스의 소모 전력을 수식적으로 표현한 것이다. 이 전력 모델에 고려된 요소는 시스템의 전송 대역과 PAR, 데이터 전송량, 변조 레벨, 전송, 전송 거리 등이다. 본 논문에서는 이러한 영향을 고려하여 RF power model과 주파수 대역의 특성을 이용한 비트당 에너지와 전송량의 관계를 시스템 대역폭의 변화에 따라 분석하였다. Shannon capacity 공식과 신호의 SNR에 대한 식, 그리고 RF power model의 소모 전력을 이용하여 해당 주파수에서의 소모 전력을 구하고, Gbps급 데이터 속도에 따른 비트 당 에너지의 최소 값을 찾기 위한 시뮬레이션을 진행하였다.