• Title/Summary/Keyword: Power Minimization

Search Result 458, Processing Time 0.023 seconds

Digitally Controlled Interleaving Tapped-Inductor Boost Converter for Photovoltaic Module Integrated Converters (PV MIC)

  • Lee, Jye-June;Kim, Jitae;Bae, Hyunsu;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.74-75
    • /
    • 2010
  • As global warming due to burning fossil fuels and natural resource depletion issues have emerged, the development of renewable energy sources such as photovoltaics (PV) has been brought to recent interest. Amongst the vast efforts to harvest and convert solar energy into electricity, the module integrated converters (MIC) has become a worthy topic of research for grid-connected photovoltaic systems. Due to the required high-boosting qualities, only a restricted amount of DC/DC converter topologies can be applied to MICs. This paper investigates the possibility of a tapped-inductor boost converter as a candidate for PV MICs. A dual-inductor interleaving scheme operating slightly above the boundary of the two conduction modes (BCM) is suggested for reduction of input current ripple and minimization of component stress. A digital controller is used for implementation, assuring maximum power tracking and transfer while providing sufficient computational space for other grid connectivity applications, etc. For verification, a 200W converter is designed and simulated via computer software including component losses. High efficiency over a wide power range proves the feasibility of the proposed PV MIC system.

  • PDF

Design optimization of a hollow shaft through MATLAB and simulation using ANSYS

  • Mercy, J. Rejula;Stephen, S. Elizabeth Amudhini;Edna, K. Rebecca Jebaseeli
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.259-266
    • /
    • 2022
  • Non-Traditional Optimization methods are successfully used in solving many engineering problems. Shaft is one of important element of machines and it is used to transmit power from a machine which produces power to a machine which absorbs power. In this paper, ten non-traditional optimization methods that are ALO, GWO, DA, FPA, FA, WOA, CSO, PSO, BA and GSA are used to find minimum weight of hollow shaft to get global optimal solution. The problem has two design variables and two inequality constraints. The comparative results show that the Particle Swarm Optimization outperforms other methods and the results are validated using ANSYS.

Target Operation Voltage Guidelines Considering Voltage Level in Each Voltage Control area by Applying Optimization Technique Through EMS Data Observation (EMS data 분석 및 최적화 기법을 적용한 제어지역별 목표운전전압 제안)

  • Sung, Ung;Kim, Jae-Won;Kim, Tae-Gyun;Lee, Byong-Jun;Jung, Eung-Soo;Cho, Jong-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.671-678
    • /
    • 2009
  • This paper presents target operation voltage guidelines of each voltage control area considering both voltage stability and economical efficiency in real power system. EMS(Energy Management System) data, Real-time simulator, shows not only voltage level but lots of information about real power system. Also this paper performs optimal power flow calculation of three objective functions to propose the best target operation voltage. objective function of interchange power flow maximum and active power loss minimization stand for economical efficiency index and reactive power reserve maximum objective unction represents stability index. Then through simulation result using optimazation technique, the most effective objective function is chosen. To sum up, this paper divides voltage control area into twelve considering electric distance characteristics and estimate or voltage level by the passage of time of EMS peak data. And through optimization technique target operation voltage of each voltage control area is estimated and compare heir result. Then it is proposed that the best scenario to keep up voltage stability and maximize economical efficiency in real power system.

Development of a screw type super-charger for part load control (부분부하제어를 위한 스크류형 과급기 개발)

  • Bae, Jae-Il;Bae, Sin-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.353-358
    • /
    • 2001
  • Turbo-charging or Super-charging has been used to boost engine power for Gasoline Engine and Diesel Engine came to the world at the beginning of $20^{th}$ century. So far Turbo-Charger has enjoyed a high reputation in the charging filed for its technical advantages such as no demand of operation power from engine and an excellent charging effect in the event of a static operation at mid- and high engine speed. A mechanically driven Super-Charger, however, is now emerging in order to meet demands of the age of speed such as high engine power for a quick change of the driving mode - high engine torque even at low engine speed. Since Super-Charger needs driving power from engine, it cannot improve its relatively higher fuel consumption against that of Turbo-Charger. This negative point is still an obstacle to the wide use of Super-Charger. Super-Charger using Screw-type compressor which has already had a considerable base in air compressor market will fulfill this purpose of improving fuel consumption by minimizing operation power owing to no charging at idling or partially loading driving. This study aims to develop power control concept to achieve this minimization of operation power.

  • PDF

The Best Line Choice for Transmission System Expansion Planning on the Side of the Highest Reliability Level

  • Sungrok Kang;Trungtinh Tran;Park, Jaeseok;Junmin Cha;Park, Daeseok;Roy Billinton
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.84-90
    • /
    • 2004
  • This paper presents a new method for choosing the best line for transmission system expansion planning considering the highest reliability level of the transmission system. Conventional methodologies for transmission system expansion planning have been mainly focused on economics, which is the minimization of construction costs. However, quantitative evaluation of transmission system reliability is important because successful operation and planning of an electric power system under the deregulated electricity market depends on transmission system reliability management. Therefore, it is expected that the development of methodology for choosing the best lines considering the highest transmission system reliability level while taking into account uncertainties of transmission system equipment is useful for the future. The characteristics and effectiveness of the proposed methodology are illustrated by the case study using a MRBTS.

Windows Program Package Development for Optimal Pourer Flour Analysis (최적전력조류 해석을 위한 원도우프로그램 팩키지 개발)

  • Kim, Gyu-Ho;Lee, Sang-Bong;Lee, Jae-Gyu;Yu, Seok-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.12
    • /
    • pp.584-590
    • /
    • 2001
  • This paper presents a windows program package for solving security constrained OPF in interconnected Power systems, which is based on the combined application of evolutionary programming(EP) and sequential quadratic programming(SQP). The objective functions are the minimization of generation fuel costs and system power losses. The control variables are the active power of the generating units, the voltage magnitude of the generator, transformer tap settings and SYC setting. The state variables are the bus voltage magnitude, the reactive power of the generating unit, line flows and the tie line flow In OPF considering security, the outages are selected by contingency ranking method. The resulting optimal operating point has to be feasible after outages such as any single line outage(respect of voltage magnitude, reactive power generation and power flow limits). The OPF package proposed is applied to IEEE 14 buses and 10 machines 39 buses model system.

  • PDF

Parameter Estimation of Three-Phase Induction Motor by Using Genetic Algorithm

  • Jangjit, Seesak;Laohachai, Panthep
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.360-364
    • /
    • 2009
  • This paper suggests the techniques in determining the values of the steady-state equivalent circuit parameters of a three-phase induction machine using genetic algorithm. The parameter estimation procedure is based on the steady-state phase current versus slip and input power versus slip characteristics. The propose estimation algorithm is of non-linear kind based on selection in genetic algorithm. The machine parameters are obtained as the solution of a minimization of objective function by genetic algorithm. Simulation shows good performance of the propose procedures.

Torque Ripple Minimization of Switched Reluctance Motor Using Instantaneous Voltage Control Method (순시 전압 조정 방식에 의한 스위치드 릴럭턴스 전동기의 토크 리플 저감)

  • 정선웅;장도현;최규하
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.322-331
    • /
    • 1997
  • In this paper, Instantaneous voltage control method is proposed to reduce the torque ripple of a switched reluctance motor. This method is based on the sum control of the square of the phase currents in proposed converter. A proposed prototype SRM drive circuit is given and it's operation is analyzed. The experiments and simulations are performed to verify the capability of proposed principle.

  • PDF

An Instantaneous Torque Ripple Minimization Method of the Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 순시 토크 맥동 저감 기법)

  • Kim, Dong-Hee;Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.225-226
    • /
    • 2012
  • 본 논문은 스위치드 릴럭턴스 전동기의 순시 토크 맥동 저감 기법을 제안한다. 스위치드 릴럭턴스 전동기는 일반적으로 이중 돌극형의 구조로 인한 토크 맥동과 소음 발생의 단점을 갖는다. 본 논문에서 제안하는 제어 기법은 퍼지 로직 기반의 최적 턴 오프각 제어와 슬라이딩 모드 제어 기반의 토크 지령 보상 기법을 결합하여 순시적으로 발생하는 토크 맥동을 보상한다. 750W급 전동기 모델의 시뮬레이션 결과는 제안하는 제어 기법의 우수성을 보인다.

  • PDF

Charging Control Strategy of Electric Vehicles Based on Particle Swarm Optimization

  • Boo, Chang-Jin
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.455-459
    • /
    • 2018
  • In this paper, proposed a multi-channel charging control strategy for electric vehicle. This control strategy can adjust the charging power according to the calculated state-of-charge (SOC). Electric vehicle (EV) charging system using Particle Swarm Optimization (PSO) algorithm is proposed. A stochastic optimization algorithm technique such as PSO in the time-of-use (TOU) price used for the energy cost minimization. Simulation results show that the energy cost can be reduced using proposed method.