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Parameter Estimation of Three-Phase Induction Motor by  
Using Genetic Algorithm 
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Abstract – This paper suggests the techniques in determining the values of the steady-state equivalent 
circuit parameters of a three-phase induction machine using genetic algorithm. The parameter estima-
tion procedure is based on the steady-state phase current versus slip and input power versus slip char-
acteristics. The propose estimation algorithm is of non-linear kind based on selection in genetic algo-
rithm. The machine parameters are obtained as the solution of a minimization of objective function by 
genetic algorithm. Simulation shows good performance of the propose procedures. 
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1. Introduction 
 
In ac induction motor drives, the electrical parameters 

are, generally, determined via the classical analysis no-load 
and locked-rotor test may be obtained from actual machine 
test or from data supplied by the manufacturer [1]. Estima-
tion of the performance, done by plotting the steady-state 
slip curve. Generally to obtain the parameter, one must use 
the equivalent circuit relations and experimental results 
obtained from the above-mentioned classical analysis. 
Therefore, the parameter values obtained by direct classical 
approaches or experimental can reveal significant differ-
ence in the entire range of slip varying from 0 to 1. To de-
scribe the performance of the induction machine more pre-
cisely and to reduce the differences between the estimated 
and real performance, one must modify the parameters 
obtained from the classical analysis [2]. To achieve this 
purpose in motor, the use of identification algorithms base 
on the artificial algorithm appears to be promising ap-
proach.  

In this study it is ignored that the effect of measurement 
errors, disturbances, random signals, and core losses on the 
estimated parameters. Since the equation relating the phase 
current to slip and the circuit parameters involve many 
variables and are nonlinear, parameters can have difference 
values in case of the change of load. This fact does not 
enable to one directly use the many parameter estimation 
procedures existing in the literature [3]-[6].  

The estimation method described in this paper differs 
from other approaches in this following ways. Ansuj and 
Shokooh [1] presented a parameter estimation procedure 
that required knowledge of full load power factor and effi-
ciency. Other method of parameter estimation employ least 

square analysis of data generated during actual transient 
conditions. 

In this paper, obtaining optimal parameter of the 
equivalent circuit of three-phase induction machine is sug-
gested by genetic algorithm. During the execution of the 
estimation algorithm, we use the three points of steady-
state data of both the input power the stator current.  

 
 

2. Induction Motor Model 
 
A three-phase induction machine supplied with a three-

phase symmetrical voltage source can be described using 
the equivalent circuit shown in Fig. 1.  

A listing of the parameters in this equivalent circuit and 
their dependencies on the machine speed as treated in this 
paper follows. All circuit parameters are in ohm referred to 
stator winding. 

 

 
Fig. 1. Equivalent circuit representing steady-state of poly- 
      phase induction motor 
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Fig. 2. Equivalent circuit simplified by Thevenin’s theorem 
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R1 stator winding resistance 
X1 stator leakage reactance 
R2 rotor winding resistance referred to stator side 
X2 rotor leakage reactance referred to stator side 
Xm magnetizing reactance referred to stator side 
s slip speed 
V1 terminal voltage 
I1 stator current 
I2 rotor current referred to stator side 

In case the stator current and the input power, the equa-
tion for induction motor can be determined from the circuit 
of Fig. 2 and are expressed as following: 
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From Fig. 2, the rotor current can be determined by the 
following equation. 
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For determined the stator current we can reduce the part 
of rotor equivalent circuit as the below. 

Where eqZ  determined from the following procedures. 
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1 1I I θ= ∠                         (7) 
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1 13inP V I pf=                      (9) 
 
 

3. Estimation Framework 
 

In order to determine model parameters for the slip 
curve of equivalent circuit, reference [2] uses the non-
linear curve fitting problem stated as the solution of the 
following minimization problem:  

1

1
min ( ) [ ( , )]

N

i i
i

J y y s
NΦ∈Ω

=

Φ = − Φ∑       (10) 

where ( )J Φ is objective function obtained by the sum 
of the square of the differences between the experimental 
and calculated slip curve,Ω  is the parameter space de-
pending on the number of parameters to estimated, iy is 
the experimental data value collected from machine, 

( , )iy s Φ is non-linear function relating the measurement 
data, the circuit parameters, and the slip, andΦ is parame-

ter vector pertaining toΩ . Therefore, in case of dimension 
of parameter vector Φ  is defined as: 

1 2 1 2[ ]mR R X X XΦ =            (11) 
The above mention specific equation is for depend on 

the kind of available experimental data and for obtaining a 
parameter vector that minimize the quadratic performance 
index defined by (10). In this case, since one must deal 
with a non-linear algorithm to acquire the desired solution, 
some numerical problems may arise or direct approach 
would require writing down the normal equations for the 
solving them. The method for numerical minimization of 
performance index (10) might be modified to update the 
estimated parameter vector according load change. 
 
 

4. Genetic Algorithm 
 
4.1 Fundamental of Generic Algorithm 

 
This optimization method described in [7] and [8] by 

George K. Stefopoulos, et al. in the following. 
Genetic Algorithms are optimization methods inspired 

by natural genetics and biological evolution. They manipu-
late strings of data, each of which represents a possible 
problem solution. These strings can be binary strings, float-
ing-point string, or integer strings, depending on the way 
the problem parameters are code into chromosomes. The 
strength of each chromosome is measured using fitness 
values, which depend only on the value of the problem 
objective function for the possible solution represented by 
the chromosome. The stronger strings are retained in the 
population and recombined with other strong strings to 
produce offspring. Weaker ones are gradually discarded 
from the population. The processing of strings and the evo-
lution of the population of candidate solutions are per-
formed based on probabilistic rules. Reference [7] provides 
a comprehensive description of genetic algorithms. 

 
4.2 Chromosome Representation 
 

Two types of representations have been investigated, 
binary and real. 
 
4.3 Creation of Initial Population 
 

The initial population of candidate solution is created 
randomly. 
 
4.4 Evaluation of Candidate Solutions 
 

Each candidate solution represents a parameter vec-
torΦ ; the evaluation of each candidate solution is based 
on the objective function value ( )J Φ . Note that the objec-
tive function value is obtained after system simulation. 

The purpose of the process is to solve a minimization 
problem; the objective function to be minimized is defined 
as 
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( ) ( )F J KΦ = Φ +                (12) 
where K is small positive real number used as scaling 

coefficient, in order to avoid problems that may arise as 
( )J Φ approaches zero, and to control problem like prema-

ture convergence. 
 
4.5 Reproduction 
 

Reproduction refers to the process of selecting the best 
individuals of the population and copying them into a 
“mating pool”. These individuals from an intermediate 
population. Three types of reproduction process are im-
plemented in this work: 

1) Roulette-wheel selection, 
2) Tournament selection with user-defined window, 
3) Deterministic sampling based on the fitness propor-

tionate selection scheme. 
 
4.6 Crossover Operation 
 

In binary representation the following four types of 
crossover are used: 

1) 1-point crossover 
2) 2-point crossover 
3) Uniform crossover, which is a crossover operator 

that swaps only single bits between the two parent 
binary strings. 

4) Multi-point crossover, in which one crossover point 
is selected, randomly, for each parameter repre-
sented in the chromosome, and thereafter, 1-point 
crossover is performed in each parameter. 

In floating-point representation the crossover types 
used are: 

1) 1-point crossover, 
2) 2-point crossover, 
3) Uniform crossover, 
4) Arithmetical crossover. 
 

4.7 Mutation Operation 
 
When binary coding is used, the genetic algorithm mu-

tation simply changes a bit from “0” to “1” or vice versa. 
The bits that undergo mutation are chosen based on a prob-
ability test. The probability of mutation is generally set to a 
small value, about 0.001 to 0.01. 

In real representation, two mutation operators are im-
plemented: uniform and non-uniform mutation. 

1) Uniform mutation: This operator is analogous to the 
binary operator, but it applies to real values instead 
of binary bits; it randomly replaces the parameter 
value with another one from the appropriate interval: 

2) Non-Uniform mutation: This mutation type is de-
scribed in [8] and it is responsible for the fine-tuning 
capabilities of the real-codes GA. If a parameter 
k of value ku of a candidate solution is selected for 

mutation, its value is changed to ku′ ; 

,
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              (13) 

where ku′  depending on whether a random binary digit 
is 0 or 1. LB and UB are the lower and upper bounds of 
the individual parameter k belong to. The function ( , )t y∆  
return a value in the range [0, ]y such that the probability 
of ( , )t y∆ being close to 0 increases as the current genera-
tion number, t , increases. This property causes this opera-
tor to uniformly search the space at initial stages, when t  
is small, and very locally at later stages. The function used 
is 

( )1

( , ) 1
t
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Tt y y γ

−

∆ = ⋅ −
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           (14) 

where γ  is a random number in [0,1],T  is the maxi-
mal generation number, and b  is a parameter determining 
the degree of non-uniformity [8]. 

In real representation, since parameters do not change 
during crossover, but are just recombined differently (ex-
cept for the arithmetical crossover), the only way of affect-
ing their values is by the mutation operator. Moreover, the 
mutation probabilities used are greater than the ones in 
binary representation and may reach up to 5% [7]. 
 
4.8 Creation of the Next Generation 
 

After mutation is completed, the children population is 
created and the previous population is replaced by the new 
generation. Children are evaluated and the fitness function 
for each individual is calculated. The procedure is repeated 
until the termination criterion is met, defined by a maxi-
mum number of generation. 
 
 

5. Simulation 
 

The illustrate the application of the propose method a 3 
hp, 380V, 50 Hz three-phase induction motor was selected. 
The performance of machine between 0 – 1 of slip difficult 
to determine in practice. Therefore, a computer program 
was developed for PC to calculate the steady-state per-
formance from the real parameter. The input data of the 
propose method are the stator current, the input power, and 
the power factor, that corresponded with the 0 – 0.1 of slip.  

The genetic algorithm suggested in this paper is simu-
lated and compared with true values. Objective func-
tion

1
( )J Φ is used but object function

2
( )J Φ is introduced 

for more optimal parameter selection as follow: 
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where I , inP , and pf  are the amplitude of stator cur-
rent, power input, and power factor, respectively. Also, 
t and c  are the quantity of simulated by true value and 
genetic algorithm selection, respectively. 
 
 

6. Conclusion 
 

This paper investigates the application of genetic algo-
rithm for the estimation of steady-state models of induction 
motor. The main advantages of the proposed methodology 
are using only 3-5 of input data points required, it flexibil-
ity, the simplicity of its mechanism, and the good result 
even for bad initial of parameters. 

The propose method has been successfully applied to 
the dynamic estimation of the other machine models. The 
obtained results demonstrate the feasibility and practicality 
of the proposed genetic algorithm approach. 
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Fig. 3. Variation of I1(s) by genetic algorithm selection and  
      true values 
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Fig. 4. Variation of Pin(s) by genetic algorithm selection  

and true values 
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Fig. 5. Variation of pf(s) by genetic algorithm selection and  

   true values 
 
Table 1. The caption must be followed by the table 
 

gen 
1R  2R  1X  2X  mX  

True 2.933 3.058 1.555 2.225 32.235 

Initial 1 1 1 1 1 

1 ( )J Φ 2.933 2.966 2.041 1.680 31.749 

2 ( )J Φ 2.933 3.070 1.490 2.299 32.302 
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