• Title/Summary/Keyword: Power Measurement

Search Result 4,625, Processing Time 0.034 seconds

PCB Integrated Spiral Pattern Pick-up Coil Current Measurement Scheme with High Sensitivity for WBG Devices (WBG 소자를 위한 높은 측정 감도를 가지는 PCB 내장형 Spiral 패턴 Pick-up Coil 전류 측정 기법)

  • Kim, Kyeong-Mo;Cha, Hwa-Rang;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.162-170
    • /
    • 2020
  • In this paper, we report our study of the current measuring technique by implementing a pick-up coil in the PCB pattern instead of the current measuring sensor in a power converter using a WBG device. The proposed PCB pattern coil structure has a higher mutual inductance value than the conventional pattern by constructing the coil using the multi layer board. It has high sensitivity and is configured without additional process outside the PCB. In the current measurement, the integrator is measured by integrating the coil at the back end and the current waveform measured using proposed pick-up coil is confirmed by comparing it with the original current waveform through DPT simulation.

Software Reliability of Safety Critical FPGA-based System using System Engineering Approach

  • Pradana, Satrio;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.49-57
    • /
    • 2018
  • The main objective of this paper is come up with methodology approach for FPGA-based system in verification and validation lifecycle regarding software reliability using system engineering approach. The steps of both reverse engineering and re-engineering are carried out to implement an FPGA-based of safety critical system in Nuclear Power Plant. The reverse engineering methodology is applied to elicit the requirements of the system as well as gain understanding of the current life cycle and V&V activities of FPGA based-system. The re-engineering method is carried out to get a new methodology approach of software reliability, particularly Software Reliability Growth Model. For measure the software reliability of a given FPGA-based system, the following steps are executed as; requirements definition and measurement, evaluation of candidate reliability model, and the validation of the selected system. As conclusion, a new methodology approach for software reliability measurement using software reliability growth model is developed.

The study on the DC Ic measurement in the 22.9kV, 50MVA HTS power cable (22.9kV, 50MVA급 초전도 전력케이블 DC $I_c$ 측정에 관한 연구)

  • Choi, S.J.;Lee, S.J.;Sim, K.D.;Cho, J.W.;Jang, H.M.;Lee, S.K.;Sohn, S.H.;Hwang, S.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.28-31
    • /
    • 2008
  • 22.9kV 50MVA HTS power cable has been developed and tested by Korea Electrotechnology Research Institute and LS Cable Company and it was supported by a grant from Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program. In this paper, DC Ic of 100m HTS cable which is installed at Kochang testing station was measured and analyzed. A measurement technique of DC Ic used by resistance and inductance removal method is established.

Load-Pull Measurement for High Power, High Efficiency PA Design (고출력, 고효율 PA 설계를 위한 로드-풀 측정)

  • Lim, Eun-Jae;Lee, Gyeong-Bo;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.945-952
    • /
    • 2015
  • Power amplification device which is matched to $50{\Omega}$ in order to achieve a high efficiency of a power amplifier using a GaN power amplification device, since there is a limit of application frequency bands, output power, efficiency characteristics selection, in this study based on the measurement data through the source/load-pull test, high output power and to extract quantitative input and output impedance that matches the design objectives of high output power, high efficiency, an implementation of the high efficiency power amplifier. Implemented power amplifier is shows 25watt(44dBm), PAE of 66-76% characteristics in the frequency band of 2.7-3.1 GHz.

Wide-area Frequency-based Tripped Generator Locating Method for Interconnected Power Systems

  • Kook, Kyung-Soo;Liu, Yilu
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.776-785
    • /
    • 2011
  • Since the Internet-based real-time Global Positioning System(GPS) synchronized widearea power system frequency monitoring network (FNET) was proposed in 2001, it has been monitoring the power system frequency in interconnected United States power systems and numerous interesting behaviors have been observed, including frequency excursion propagation. We address the consistency of a frequency excursion detection order of frequency disturbance recorders in FNET in relation to the same generation trip, as well as the ability to recreate by power systems dynamic simulation. We also propose a new method, as an application of FNET measurement, to locate a tripped generator using power systems dynamic simulation and wide-area frequency measurement. The simulation database of all the possible trips of generators in the interconnected power systems is created using the off-line power systems dynamic simulation. When FNET detects a sudden drop in the monitoring frequency, which is most likely due to a generation trip in power systems, the proposed algorithm locates a tripped generator by finding the best matching case of the measured frequency excursion in the simulation database in terms of the frequency drop detection order and the time of monitoring points.

Bridge-edges Mining in Complex Power Optical Cable Network based on Minimum Connected Chain Attenuation Topological Potential

  • Jiang, Wanchang;Liu, Yanhui;Wang, Shengda;Guo, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1030-1050
    • /
    • 2021
  • The edges with "bridge characteristic" play the role of connecting the communication between regions in power optical cable network. To solve the problem of mining edges with "bridge characteristic" in provincial power optical cable network, the complex power optical cable network model is constructed. Firstly, to measure the generated potential energy of all nodes in n-level neighborhood local structure for one edge, the n-level neighborhood local structure topological potential is designed. And the minimum connected chain attenuation is designed to measure the attenuation degree caused by substituted edges. On the basis of that, the minimum connected chain attenuation topological potential based measurement is designed. By using the designed measurement, a bridge-edges mining algorithm is proposed to mine edges with "bridge characteristic". The experiments are conducted on the physical topology of the power optical cable network in Jilin Province. Compared with that of other three typical methods, the network efficiency and connectivity of the proposed method are decreased by 3.58% and 28.79% on average respectively. And the proposed method can not only mine optical cable connection with typical "bridge characteristic" but also can mine optical cables without obvious characteristics of city or voltage, but it have "bridge characteristic" in the topology structure.

The Effect of External DC Electric Field on the Atmospheric Corrosion Behaviour of Zinc under a Thin Electrolyte Layer

  • Liang, Qinqin;YanYang, YanYang;Zhang, Junxi;Yuan, Xujie;Chen, Qimeng
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.54-59
    • /
    • 2018
  • The effect of external DC electric field on atmospheric corrosion behavior of zinc under a thin electrolyte layer (TEL) was investigated by measuring open circuit potential (OCP), cathodic polarization curve, and electrochemical impedance spectroscopy (EIS). Results of OCP vs. time curves indicated that the application of external DC electric field resulted in a negative shift of OCP of zinc. Results of cathodic polarization curves measurement and EIS measurement showed that the reduction current of oxygen increased while charge transfer resistance ($R_{ct}$) decreased under the external DC electric field. Variation of OCP negative shift, reduction current of oxygen, and $R_{ct}$ increase with increasing of external DC electric field strength as well as the effect of external DC electric field on double-layer structure in the electrode/electrolyte interface and ions distribution in thin electrolyte layer were analyzed. All results showed that the external DC electric field could accelerate the corrosion of zinc under a thin electrolyte layer.

Automatic RF Input Power Level Control Methodology for SAR Measurement Validation

  • Kim, Ki-Hwea;Choi, Dong-Geun;Gimm, Yoon-Myoung
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.181-184
    • /
    • 2015
  • Evaluation of radiating radiofrequency fields from hand-held and body-mounted wireless communication devices to human bodies are conducted by measuring the specific absorption rate (SAR). The uncertainty of system validation and probe calibration in SAR measurement depend on the variation of RF power used for the validation and calibration. RF input power for system validation or probe calibration is controlled manually during the test process of the existing systems in the laboratories. Consequently, a long time is required to reach the stable power needed for testing that will cause less uncertainty. The standard uncertainty due to this power drift is typically 2.89%, which can be obtained by applying IEC 62209 in a normal operating condition. The principle of the Automatic Input Power Level Control System (AIPLC), which controls the equipment by a program that maintains a stable input power level, is suggested in this paper. The power drift is reduced to less than ${\pm}1.16dB$ by AIPLC, which reduces the standard uncertainty of power drift to 0.67%.