
Software Reliability of Safety Critical FPGA-based System using System Engineering Approach 49

Journal of KOSSE. (2018. 12) Vol. 14, No. 2 pp. 49-57

DOI: https://doi.org/10.14248/JKOSSE.2018.14.2.049

www.kosse.or.kr

ISSN (print) : 1738-480X

ISSN (online) : 2288-3592

Satrio Pradana, Jae Cheon Jung
*

Department of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School

Abstract : The main objective of this paper is come up with methodology approach for FPGA-based system

in verification and validation lifecycle regarding software reliability using system engineering approach. The

steps of both reverse engineering and re-engineering are carried out to implement an FPGA-based of safety

critical system in Nuclear Power Plant. The reverse engineering methodology is applied to elicit the

requirements of the system as well as gain understanding of the current life cycle and V&V activities of

FPGA based-system. The re-engineering method is carried out to get a new methodology approach of

software reliability, particularly Software Reliability Growth Model. For measure the software reliability of a

given FPGA-based system, the following steps are executed as; requirements definition and measurement,

evaluation of candidate reliability model, and the validation of the selected system. As conclusion, a new

methodology approach for software reliability measurement using software reliability growth model is

developed.

Key Words : Software Reliability, Software Reliability Growth Model, Reverse Engineering, Re-engineering, V&V

Activities, FPGA-based system, Software Reliability Measurement

시스템엔지니어링 학술지 제14권 2호. 2018. 12

50 시스템엔지니어링

1. Introduction

Software reliability is defined as the probability

of failure-free software operation in a defined

environment for a specified period of time. A

failure is the departure of software behaviour

from user requirements. [1] This dynamic

phenomenon has to be distinguished from the

static fault (or bug) in the software code,

which causes the failure occurrence as soon

as it is activated during program execution.

Since software does not deprecate like

hardware, the reliability of software stays

constant over time if no changes are made to

the code or to the environmental conditions

including the user behaviour. However, if each

time after a failure has been experienced the

underlying fault is detected and perfectly fixed,

then the reliability of software will increase with

time. Typically this is the situation during the

testing phase.

It has become important issue for instru-

mentation and control systems in nuclear power

plant. Particularly when using safety critical

software, various methods like formal verification

and validation play critical roles demonstrating

compliance with several regulatory requirements.

In this paper, we proposed a methodology

for assessing software reliability in safety critical

software with FPGA based system. Since FPGA

is a strong candidate to replace software system

in nuclear power plant.

2. Software Reliability

2.1 Software Reliability Growth Model

Software reliability growth model (SRGM) is

one of the methods that are used to quantify

software failure rates and demand failure pro-

babilities of digital system. SRGMs are Time-

based methods that use test data to estimate

software failure rates that, in turn, are employed

to determine whether a particular software can

be released, by demonstrating that its failure

rate meets the desired level.

A large number of software reliability growth

models (SRGMs) have been developed over

the years[2-6], and each model has its strengths

and limitations[7-9]. None is generally superior

to the others, because all are based on assumed

empirical formulas that are not applicable to all

situations. There are different assumptions in

different SRGMs on how the failure rate de-

creases with time; that is, the models specify

different empirical formulas, and use test data

to estimate their parameters. The empirical

formulas and test data are employed to decide

if the failure rate objective has been reached.

IEEE Standard 1633-2008 [10] grouped

SRGMs into three high-level categories, expo-

nential Non-Homogeneous Poisson Process

(NHPP); non-exponential NHPP; and Bayesian;

and briefly described many of the models.

2.2 Verification & Validation in FPGA

Verification and validation (V&V) processes

are used to determine whether the development

products of a given activity conform to the

requirements of that activity and whether the

product satisfies its intended use and user

needs. According to IEEE 1012, [11] V&V life

cycle process requirements are specified for

different integrity levels. The scope of V&V

processes encompasses systems, software,

and hardware, and it includes their interfaces.

V&V processes include the analysis, evaluation,

시스템엔지니어링 학술지 제14권 2호. 2018. 12

Software Reliability of Safety Critical FPGA-based System using System Engineering Approach 51

review, inspection, assessment, and testing of

products.

As a software, FPGA need to be verified and

validated. First stage is requirements definition

phase (requirement phase), verification validation

activities in accordance with the V&V Plan shall

be performed. In addition, the independent

review shall perform V&V activities. This phase

states the minimum requirements for the V&V

Plan, which shall specify the details of the

V&V activities.

In the design phase, the FPGA Design Speci-

fications including the Software Design Description

(SDD) for each FPGA shall be produced. Because

FPGAs are independent from each other; most

of the activities in this phase and the imple-

mentation phase can be performed independently.

The development activities in the implementation

and integration phase are divided into the

following steps such as: VHDL Source Coding,

FPGA Implementation, and FPGA Validation. In

between, shall be included process of measuring

software reliability.

3. Methodology

As mentioned above, FPGA need a specific

verification and validation activities. We propose

a methodology for verification and validation

as shown in Figure 1. An approach that we

emphasize are after code implementation &

testing. In order to perform the reliability

analysis, Software Reliability Growth Model

are applied.

3.1 Requirements definition (hardware, software,

subsystems)

The requirements of definition are functional,

performance and safety requirements; diagnostics;

human factors; interfaces with external com-

ponents; and communication requirements. When

implementing the above requirements, V&V

[Figure 1] Verification and validation V model for software critical safety FPGA-based system

시스템엔지니어링 학술지 제14권 2호. 2018. 12

52 시스템엔지니어링

can ensure that: requirements are consistent

with those specified in higher level docu-

mentation; every possible branch of the logic

that implements the above requirements results

in the desired outcome (White Box testing);

and inputs result in the desired outputs inde-

pendently of implementation details (Black Box

testing).

Specifically for software requirement, this

approach are emphasizes more in software part

than hardware. It will be explained in the next

section.

3.1.1 Requirements Specifications

As mention in IAEA Nuclear Energy Series

No.NP-T-3.17 Application of Field Programmable

Gate Arrays in Instrumentation and Control

Systems of Nuclear Power Plants. That gives

some guidelines to define the requirements for

FPGA as follow[12]:

1. Functional and timing requirements for

FPGA circuit;

2. Electrical and logical interfaces;

3. Environmental conditions and corresponding

qualification requirements;

4. Quality of service requirements,

5. O&M requirements,

3.1.2 Software Requirement

The purpose of Software Requirements is to

establish the requirements of the software

elements of the system. As a result, the

requirements allocated to the software elements

of the system and their interfaces are defined;

it analyzed for correctness and testability; the

impact on the operating environment are under-

stood; consistency and traceability; prioritization

for implementing the software requirements is

defined; approved and updated as needed.

3.2 Design

V&V includes testing in a simulated envir-

onment. Requirements are translated into an

architecture involving software and hardware

components.

- Product Architecture Design: functionality

allocated to hardware and software modules

of the product.

- Software Architecture Design: software

functionality allocated to the different

modules and developed. The output of

this activity is commented VHDL code

and associated design description.

3.3 Implementation

Translation of the chosen architecture and

functionality assigned to the different software

and hardware modules into database structures,

communication protocols and related machine

executable representations.

Figure 2 showing integration between the

FPGA development process and the V&V

activities.

3.4 Software Reliability Measurement

After finishing implementation and testing

process, it is the time to measure the code

reliability using the failure rate coming from

applying the testing methods. This process is

important as a step for developing a high-

quality software.

3.4.1 Requirements on the testing data

The output from the implementation and testing

phase shall be collected and gathered in a way

to properly analyze a data sample for reliability

시스템엔지니어링 학술지 제14권 2호. 2018. 12

Software Reliability of Safety Critical FPGA-based System using System Engineering Approach 53

purposes, the data must meet some prerequisites.

There are two forms of data that are suitable

for statistical analysis of reliability:

1. Event data, Time Between Failure or

failure reports. This data should contain

date and time information, information

about the kind and severity, and downtime

of each failure.

2. Time series data, or number of failures

per time interval. There should be in-

formation about the time periods that

these cover, and the time intervals should

preferably be of uniform length.

3.4.2 Reliability Measurement

This process includes measures that are

intended to discover and correct faults resulting

from these errors, including reviews, audits,

screening. Managing these errors involves

describing the errors, classifying the severity

and criticality of their effects, and modeling

the effects of the remaining faults in the

delivered product, and thereby working with

designers to reduce their number of errors

and their criticality.

Because there are many of potential models

available, it is not easy to select which model

may be most appropriate for a specific situation

so an approach has been set as a guidance on

model selection based on the following

constraints:[13]

1. Failure profiles (failure intensity trend)

2. Maturity of software (what phase of its

life cycle is the software in)

3. Characteristics of software development

(how are failure modes detected/mitigated)

[Figure 2] FPGA design, development and V&V processes

시스템엔지니어링 학술지 제14권 2호. 2018. 12

54 시스템엔지니어링

4. Characteristics of software test

5. Existing metrics and data

SR models can both assess and predict

reliability. The former deals with measuring past

and current reliabilities. The latter provides

forecasts of future reliability. The word “pre-

diction” is not intended to be used in the

common dictionary sense of foretelling future

events, particularly failures, but instead as an

estimate of the probabilities of future events.

Both assessment and prediction need good

data if they are to yield good forecasts. Good

data implies accuracy (that data is accurately

recorded at the time the events occurred) and

pertinence (that data relates to an environment

that is equivalent to the environment for which

the forecast is to be valid).

In Figure 3, some of models are recom-

mended to be used in different phase of

software development lifecycle. It depends on

which phase are we used the software

reliability method. In this approach, testing the

reliability of software can be assessed after

code implementation and testing.

3.4.3 Evaluation and comparison criteria for

reliability models

In other way called methods of model validation

and comparison. To measure the software

reliability one or more software reliability

models should be selected and applied. Model

selection criteria and guidance on the appro-

priateness of one model over another depending

on certain situations is useful. From reviewing

many journal papers, the applicable standards

and making a survey for software reliability

measurements toolkits an approach has been

set and it include the following:

- Choosing Software Reliability Growth Model

(SRGMs) as a quantitative software reliability

methods (QSRMs).

- Select Toolkit to apply the SRGMs models

There are several ways in which a models

goodness can be evaluated and these ways is

listed as follow [14]:

1. Predictive validity: This is the capability

of the model to predict future failure

behaviour during either the test or the

operational phases from present and past

[Figure 3] Selection during life cycle phase [15]

시스템엔지니어링 학술지 제14권 2호. 2018. 12

Software Reliability of Safety Critical FPGA-based System using System Engineering Approach 55

failure behaviour in the respective phase.

2. Capability: The ability of the model to

estimate with satisfactory accuracy quantities

needed by software managers, engineers,

and users in planning and managing soft-

ware development projects or controlling

change in operational software systems.

3. Quality of assumptions: If an assumption

made by a model can be tested, the

degree to which it is supported by actual

data; if it is not possible to test an

assumption, its plausibility from the view-

point of logical consistency and software

engineering experience. Also the clarity

and explicitness of an assumption should

be judged.

4. Applicability: Means the usefulness of the

model across different software products

(size, structure, and function), different

development environments, different oper-

ational environments, and different life

cycle phases.

5. Simplicity: The simplicity and inexpen-

siveness of collecting the data that is

required to particularize the model.

3.4.4 Software Reliability tools

The Several software reliability tools are

available to apply one or more of the software

reliability model to a development effort and to

determine the applicability of a particular model

to a set of failure data. A major issue in

modelling software reliability lies in the ease-

of-use of currently available tools.

Following tasks are handled by the SRE tools:

1. Collecting failure and test time information

2. Calculating estimates of model parameters

using information available.

3. Testing to fit a model against the collected

information.

4. Selecting a model to make predictions of

remaining faults, time to test, etc.

5. Applying the model

3.4.5 Software Reliability Validation

Once the data has been collected and the

model has been selected and parameters are

estimated, the analyst is ready to perform the

appropriate analysis. This analysis should be

to assess the current reliability of the software,

predict the number of failures remaining in the

code, or predict a test completion date.

As achievement of the reliability target

approaches, the adherence of the actual data

to the model predictions should be reviewed

and the model corrected, if necessary.

Additional test duration should be predicted

if the initial and objective failure intensities

and the parameters of the model are known

using software reliability tools.

3.5 System Integration (FPGA Aspects)

The process of system integration is the

combining of verified FPGA hardware com-

ponents into subsystems and finally into the

complete system. This process consists of two

kinds of activities:

a) System integration: assembling and inter-

connecting verified FPGA hardware in

order to build the intermediate and final

targets.

b) Integrated system verification: verifying

that the components comply with their

design specification, are capable of operating

together, and comply with their interface

requirements.

시스템엔지니어링 학술지 제14권 2호. 2018. 12

56 시스템엔지니어링

3.6 System Validation (FPGA Aspects)

The objective of this phase is to test the

integrated system to demonstrate compliance

with the functional, performance and interface

specifications. Testing shall be performed to

validate the system and its software, program-

ming and configuration data to be in accordance

with the system requirements. Validation shall

comprise tests performed on the system in the

final assembly configuration including the final

version of the software and other programming

data. System validation demonstrate that the

system meets its system specification and its

system requirements specification.

4. Conclusion and future work

Software reliability growth model for software

critical safety which is based on FPGA hardware

and VHDL software is developed in this work

using the system engineering approach. The

proposed methodology approach is conducted

through the concept of verification and validation

using V-model. The requirements, selecting

criteria, and applying software reliability model

are also proposed.

This paper shows the steps of both reverse

engineering and re-engineering activities carried

out to estimate reliability in software critical

safety system on FPGA-based. The selecting

process model and tools were reviewed. The

reverse engineering methodology is applied to

elicit the requirements of the system as well

as gain understanding of the current life cycle

and V&V activities of FPGA based-system.

The re-engineering method is carried out to

get a new methodology approach of software

reliability, particularly Software Reliability Growth

Model. For measure the software reliability of

a given FPGA-based system, the following

steps are executed as; requirements definition

and measurement, evaluation of candidate

reliability model, and the validation of the

selected system. Emphasis in reverse and

re-engineering aspect.

The future work will focus on the testing

proposed methodology for software critical

safety system by simulating software reliability

tools and verifying the design measures

according of performance requirements design

such us, reliability analysis, safety integration

and also coverage of code.

Acknowledgements

This work was supported by the 2018

Research fund of KEPCO International Nuclear

Graduate School (KINGS), Republic of Korea.

References

1. C. A. Asad, M. I. Ullah, M. J. Rehman “An

Approach for Software Reliability Model

Selection,” in Proc. 28th Annual International

Computer Software and Applications Conference

(COMPSAC’04), Hong Kong, 2004.

2. Ajeet Kumar Pandey & N. K. Goyal, “A

Fuzzy Model for Early Software Fault

Prediction Using Process Maturity and

Software Metrics”, International Journal of

Electronics Engineering, 1(2), 2009, pp.

239-245.

3. J. D. Musa and K. Okumoto, “A Logarithmic

Poisson Execution Time Model for Software

Reliability Measurement”, Bell Laboratories,

Whippany, N. J. 07981.

시스템엔지니어링 학술지 제14권 2호. 2018. 12

Software Reliability of Safety Critical FPGA-based System using System Engineering Approach 57

4. Xiaolin Teng and Hoang Pham, ”A New

Methodology for Predicting Software Reliability

in the Random Field Environments, IEEE

Transactions On Reliability, Vol. 55, No. 3,

September 2006.

5. BAI Cheng-Gang, Jiang Chang-Hai, & CAI

Kai Yuan, “A Reliability Improvement Predictive

Approach to Software Testing with Bayesian

Method‖, Proceedings of the 29th Chinese

Control Conference, July 29-31, 2010,

Beijing, China.

6. Xiaolin Teng, & Hoang Pham, “A Software

Reliability Growth Model for N-Version

Programming Systems“, IEEE Transactions

on Reliability, Vol. 51, No. 3, September

2002.

7. Chin-Yu Huang, Michael R. Lyu & Sy Yen

Kuo, “A Unified Scheme of Some Non-

homogenous Poisson Process Models for

Software Reliability Estimation,” IEEE Trans-

actions on Software Engineering, Vol. 29,

No. 3, Page 261-270, March 2003.

8. Roger C. Cheung, “A User-Oriented Software

Reliability Model‖, IEEE Transactions on

Software Engineering, Vol. Se-6, No. 2,

Page 118-126, March 1980.

9. Hoang Pham, “An Imperfect-debugging Fault-

detection Dependent-parameter Software,

International Journal of Automation and

Computing, 04(4), October 2007, 325-328.

10. IEEE, “IEEE Recommended Practice on

Software Reliability,” IEEE Std 1633, 2008.

11. IEEE, “IEEE Standard for System and Soft-

ware Verification and Validation” IEEE Std

1012, 2016.

12. IAEA, “Application of Field Programmable

Gate Arrays in Instrumentation and Control

Systems of Nuclear Power Plants,” Inter-

national Atomic Energy Agency, Vienna,

IAEA Nuclear Energy Series No. NP-T-

3.17, 2016.

13. CSIAC Handbook of Software Reliability

and Security Testing, 2014.

14. A. Iannino, J. D. Musa, & K. Okumoto,

“Criteria for software reliability model com-

parisons,” ACM SIGSOFT Software Engineering

Notes, Vol. 8, No. 3 (July 1983), pp. 12-16.

15. US ARMY, Technical Report, NO. TR-

2011-24, Materiel Systems Analysis Activity,

Aberdeen Proving Ground, Maryland 21005-

5071, August 2011.

