Browse > Article
http://dx.doi.org/10.14773/cst.2018.17.2.54

The Effect of External DC Electric Field on the Atmospheric Corrosion Behaviour of Zinc under a Thin Electrolyte Layer  

Liang, Qinqin (Guangxi Power Grid Electric Power Research Institute)
YanYang, YanYang (Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power)
Zhang, Junxi (Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power)
Yuan, Xujie (Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power)
Chen, Qimeng (Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power)
Publication Information
Corrosion Science and Technology / v.17, no.2, 2018 , pp. 54-59 More about this Journal
Abstract
The effect of external DC electric field on atmospheric corrosion behavior of zinc under a thin electrolyte layer (TEL) was investigated by measuring open circuit potential (OCP), cathodic polarization curve, and electrochemical impedance spectroscopy (EIS). Results of OCP vs. time curves indicated that the application of external DC electric field resulted in a negative shift of OCP of zinc. Results of cathodic polarization curves measurement and EIS measurement showed that the reduction current of oxygen increased while charge transfer resistance ($R_{ct}$) decreased under the external DC electric field. Variation of OCP negative shift, reduction current of oxygen, and $R_{ct}$ increase with increasing of external DC electric field strength as well as the effect of external DC electric field on double-layer structure in the electrode/electrolyte interface and ions distribution in thin electrolyte layer were analyzed. All results showed that the external DC electric field could accelerate the corrosion of zinc under a thin electrolyte layer.
Keywords
Zinc; Polarization; EIS; Atmosphere corrosion; External DC electric field;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. T. Chin and T. W. Fu, Corrosion, 35, 514 (1979).   DOI
2 J. L. Wendt and D. T. Chin, Corros. Sci., 25, 901 (1985).   DOI
3 D. K. Kim, S. Muralidharan, T. H. Ha, J. H. Bae, Y. C. Ha, H. G. Lee, and J. D. Scantlebury, Electrochim. Acta, 51, 5259 (2006).   DOI
4 S. Muralidharan, D. K. Kim, T. H. Ha, J. H. Bae, Y. C. Ha, H. G. Lee, and J. D. Scantlebury, Desalination, 216, 103 (2007).   DOI
5 S. Goidanich, L. Lazzari, and M. Ormellese, Corros. Sci., 52, 491 (2010).   DOI
6 R. W. Bosch, and W. F. Bogaerts, Corros. Sci., 40, 323 (1998).   DOI
7 C. M. Movley, Proc. Corrosion 2005 Conf., pp. 1 - 8, Houston, Texas, NACE (2005).
8 A. P. Yadav, A. Nishikata, and T. Tsuru, Corros. Sci., 46, 169 (2004).   DOI
9 V. Barranco. S. Feliu Jr, and S. Feliu, Corros. Sci., 46, 2221 (2004).   DOI
10 H. L. Huang, X. P. Guo, and Z. H. Dong, Corros. Sci., 53, 1700 (2011).   DOI
11 Y. L. Cheng, F. H. Cao, J. F. Li, J. Q. Zhang, J. M. Wang, and C. N. Cao, Corros. Sci., 46, 1649 (2004).   DOI
12 H. L. Huang, Z. Q. Pan, X. P. Guo, and Y. B. Qiu, Corros. Sci., 75, 100 (2013).   DOI
13 R. Radeka, D. Zorovic, and D. Barisin, Anti-Corros. Method. M., 27, 13 (1980).
14 T. H. Muster and I. S. Cole, Corros. Sci., 46, 2319 (2004).   DOI
15 B. Zhang, H. B. Zhou, E. H. Han, and K. Wei, Electrochim. Acta, 54, 6598 (2009).   DOI
16 A.P. Yadav, A. Nishikata, and T. Tsuru, J. Electroanal. Chem., 585, 142 (2005).   DOI
17 D. L. Klass, J. Appl. Phys., 38, 67 (1967).   DOI
18 D. L. Klass, J. Appl. Phys., 38, 75 (1967).   DOI
19 H. Block and J. P. Kelly, J. Phys. D: Appl. Phys., 21, 1661 (1988).   DOI
20 T. C. Jordan, IEEE T. Electr. Insul., 24, 849 (1989).   DOI
21 D. Y. Gao, Yuxi Col. J., 8, 82 (1986).
22 A. Panchenko, M. T. M. Koper, T. E. Shubina, S. J. Mitchell, and E. Roduner, J. Electrochem. Soc., 151, A2016 (2004).   DOI