• Title/Summary/Keyword: Power Feeding Systems

Search Result 83, Processing Time 0.022 seconds

Design of High Efficiency Switching Mode Class E Power Amplifier and Transmitter for 2.45 GHz ISM Band (2.45 GHz ISM대역 고효율 스위칭모드 E급 전력증폭기 및 송신부 설계)

  • Go, Seok-Hyeon;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • A power amplifier of 2.4 GHz ISM band is designed to implement a transmitter system. High efficiency amplifiers can be implemented as class E or class F amplifiers. This study has designed a 20 W high efficiency class E amplifier that has simple circuit structure in order to utilize for the ISM band application. The impedance matching circuit was designed by class E design theory and circuit simulation. The designed amplifier has the output power of 44.2 dBm and the power added efficiency of 69% at 2.45 GHz. In order to apply 30 dBm input power to the designed power amplifier, voltage controlled oscillator (VCO) and driving amplifier have been fabricated for the input feeding circuit. The measurement of the power amplifier shows 43.2 dBm output and 65% power added efficiency. This study can be applied to the design of power amplifiers for various wireless communication systems such as wireless power transfer, radio jamming device and high power transmitter.

Torque Ripple Minimization for Induction Motor Driven by a Photovoltaic Inverter

  • Atia, Yousry
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.679-690
    • /
    • 2009
  • The paper presents a new photovoltaic inverter for stand-alone induction motor application. The proposed system is composed of two stages. First stage is for the photovoltaic dc power feeding and second stage is dedicated to the motor-inverter subsystem and control technique. A direct torque control (DTC) with a novel switching strategy for motor torque ripple minimization is introduced. The novel DTC strategy is based on selecting a suitable voltage vector group for motor torque ripple minimization. A three-level voltage source inverter (VSI) is used instead of a two level inverter because the first has more available vectors and lower ripples in the output current and flux than the second, thus it has lower torque ripples. The photovoltaic array and battery bank are sized and the configuration is indicated based on sun-hour methodology. Simulation results show a comparison between three systems; two level VSI with conventional DTC strategy, three level VSI with conventional DTC, and the proposed system that has a novel DTC switching strategy applied to three level VSI. The results show that the proposed system has lower ripples in the current, flux and torque of the motor.

Harmonic Evaluation of An Imported IAT(Intra Airport Transit) System in Incheon International Airport (인천 국제공항청사 경전철 도입에 따른 고조파 영향 분석)

  • Lee Jun-Kyong;Lee Seung-Hyuk;Kim Jin-O;Jung Hyun-Soo
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.788-793
    • /
    • 2005
  • This paper presents harmonic evaluation of an IAT(Intra Airport Transit) system in Incheon International Airport. It will be used electric vehicles with 80 kW per car that are produced Mitsubishi Heavy Industries Ltd, and one car is constructed with SIV(Static Inverter), VVVF(Variable Voltage and Variable Frequency) and two induction motor. The operated vehicles in the IAT system are rapidly changing DC load, and at a feeding substation, 3-phase electric power is transferred to DC 750 V by rectifier. Since, vehicles are also changing continuously, the voltages for the DC load fluctuate in the IAT system, and moreover, the fluctuating voltages generate high-order harmonics. This means that there is the difficulty in maintaining power quality in KEPCO systems' side. Therefore, the power quality of the IAT system in Incheon International Airport is evaluated using PSCAD/EMTDC simulator in the paper. The THD(Total Harmonic Distortion) of voltages and TDD(Total Demand Distortion) of currents, indices are calculated for the IAT system using the results of PSCAD/EMTDC dynamic simulation.

  • PDF

Population Dynamics Pattern of Green Peach Aphid (Homoptera: Aphididae) and Its Predator Complex in a Potato System

  • Ro, Tae-Ho;Garrell E. Long
    • Animal cells and systems
    • /
    • v.2 no.2
    • /
    • pp.217-222
    • /
    • 1998
  • Green peach aphid, Myzus persicae(Sulzer) (Homoptera: Aphididae), interacts with many predatory insects in potato fields during the summer. The concept of the predator complex associated with green peach aphids was applied to explain the interactions between the aphid and its predators. The predator power of the predator complex was determined by two factors: the number of predators and the relative feeding capacity. The dynamics of the green peach aphid population was expressed by the number of individuals while the predator power was used to characterize the predator complex. Cumulative degree-days for green peach aphids were used as a time scale to analyze phonology and dynamics patterns of the aphid and its predator complex. The patterns of population changes in aphids were similar during the period of study(1993-1995) although the highest density of aphids fluctuated significantly from year to year. However, the predator power appeared more stable than the green peach aphid population over the three year period. The results indicated that the predator complex plays an important role to suppress the aphid populations during the latter part of the season and that the applications of control measures for green peach aphids in between the initiation and the peak timing of aphid populations are critical to minimize the damage on potatoes.

  • PDF

Computational Fluid Dynamic Modeling for Internal Antenna Type Inductively Coupled Plasma Systems (CFD를 이용한 내장형 안테나 유도 결합 플라즈마 시스템 모델링)

  • Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.164-175
    • /
    • 2009
  • CFD is used to analyze gas flow characteristics, power absorption, electron temperature, electron density and chemical species profile of an internal antenna type inductively coupled plasma system. An optimized grid generation technology is used for a complex real-scale models for industry. A bare metal antenna shows concentrated power absorption around rf a feeding line. Skin depth of power absorption for a system is modeled to 50 mm, which is reported 53 mm by experiments. For an application of bipolar plates for hydrogen fuel cells, multi-sheet loading ICP nitriding system is proposed using an internal ICP antenna. It shows higher atomic nitrogen density than reported simple pulsed dc nitriding systems. Minimum gap between sheets for uniform nitriding is modeled to be 39 mm.

Establishment of Optimum Pattern of Farm Machinery for Forage Production (조사료 생산을 위한 농업기계의 적정모형 설정)

  • 김건엽;김정갑;한민수
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.3
    • /
    • pp.222-230
    • /
    • 1995
  • This study was canied out to ddermine optimum areas for various sizes of land coverage of the farm machinery utilization in 1993-1994. A kind of machinery size and work systems were classed as the power tiller of 10HP+man power, the tractor of 35~46HP (tractor of 64~86HP and attachment were leased to harvest work), 64-86HP+ attachment and 90- 105HP+ attachment, respectively. \ulcornerhe results are summarized as follows: 1. The optimum areas of tractors of 90~105HP, 64~86HP and the power tiller of lOHP were estimated as 21.9 (corn-rye cropping system)- 26.9ha (sorghum $\times$ sudangrass - rye cropping system), 14.7 - 22.8ha and 1.2 - 1.61ha, respectively. The break-even-point areas of the tractors of 90-105HP. 64-86HP and the power tiller of lOHP were 16.6 (corn-rye cropping system)- 19.9ha (sorghum $\times$ sudangrass - rye cropping system), 12.5 - 16.lha and 0.12-0.13ha, respectively. 2. The optimum areas (land sizes, annual field capacity) for 50 cows by feeding rate(%) of roughage to concentrate were 6.8ha, 13.6ha in the 4060, 8.5ha, 17.0ha in the 5050 and 10.2ha, 20.4ha in the 60:40, and in case of 30 cows, it were 4.lha, 8.2ha in the 40:60, respectively. In the former case for the form of work system was the trador of 90-105HP+attachment and 64~86HP+ attachment, and the latter was the tractor of 35~46HP (tractor of 64~86HP and attachment were leased to harvest work) and 64-86HP+ attachment. 3. Productiori cost for corn-rye cropping system reducted to 51.8% in 102.9 wonkg dry matter the tractor of 90~ 105HP+ attachment with 213.4 wonkg dry matter the power tiller of 10HP+ man power.

  • PDF

Circuit Design and Performance Analysis of CCFL Dimming Controller With Frequency Modulation

  • Kim, Cherl-Jin;Ji, Jae-Geun;Yoon, Shin-Yong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.201-205
    • /
    • 2004
  • The CCFL dimming control methods are generally used lamp current regulation or average current adjustment method feeding the CCFL inverter. Inverter operation frequency is higher than resonant frequency for safe operation. In this study, we design the half-bridge type series and parallel resonant converter circuit that switches at variable frequency modulation methods to control the output power. This method has advantages such as low EMI and reduced harmonics, and it is convenient for dimming control using a microprocessor. The validity of this study is confirmed from the simulation and experimental results.

Development of an Automatic Inspection System for PWM Shaft Using Machine Vision (머신비전을 이용한 PWM Shaft의 자동검사 시스템 개발)

  • Bae, Jin-Ho;Kim, Sung-Gaun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.125-130
    • /
    • 2013
  • In this paper, in order to overcome shortcomings of manual inspection for the automotive PWM Shaft, we developed an automated inline inspection system. The automated inline inspection system consists of the work feeder unit, conveying unit, outer diameter check unit, run-out and roundness check unit, machine vision, defective separation unit and status alarm unit. We used the machine vision system for automatic inspection process and designed the inline systems for automatic feeding and selecting process. Also the repeated operation test was performed in order to verify the precision and reliability of the proposed automated inline inspection system.

Start-up Analysis and Commissioning Test of LCI System for 183MW Large Synchronous Machine (183MW 대용량 동기기 구동 LCI 시스템 기동운전 분석 및 시험)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.626-631
    • /
    • 2013
  • Gas turbine systems are applied extensively in energy supplies to cover peak load requirements. The gas turboset must be accelerated by starting device up to 60%~80% of rated speed to ignite the gas turbine. Recently, the most favorable and economical starting device is the LCI(Load Commutated Inverter). The LCI runs up the gas turboset by feeding the generator as a synchronous motor. In this paper, we discuss in detail the driving principles and features of 183MW gas turbine system. During field application of LCI system, many tests have been conducted and the results were described in this paper. The test results will be considered as the important resources for development in future.

Biomass Gasification for Fuel Cell Combined-Heat-and-Power Systems (바이오매스 활용 연료전지 열병합발전시스템을 위한 연료화 공정)

  • Hong, Gi Hoon;Uhm, Sunghyun;Hwang, Sangyeon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.335-342
    • /
    • 2022
  • In the agricultural sector where the fossil fuels are primary energy resources, the current global energy crisis together with the dissemination of smart farming has led to the new phase of energy pattern in which the electricity demand is growing faster particularly. Therefore, the fuel cell combined heat and power system, coupling the environmentally friendly fuel cell to biomass treatment and feeding, can be regarded as the most effective energy system in agriculture. In this mini-review, we discuss the R&D trend of the fuel cell combined heat and power system aimed at utilizing agricultural by-products as fuels and highlight the issues in terms of the process configuration and interconnection of individual processes.