• 제목/요약/키워드: Power Feature

검색결과 971건 처리시간 0.026초

과도 전류신호를 이용한 냉간 압연기의 판 터짐 검지 시스템 (Strip Rupture Detection System of Cold Rolling Mill using Transient Current Signal)

  • 양승욱;오준석;심민찬;김선진;양보석;이원호
    • 동력기계공학회지
    • /
    • 제14권2호
    • /
    • pp.40-47
    • /
    • 2010
  • This paper proposes a fault detection system to detect the strip rupture in six-high stand Cold Rolling Mills based on transient current signal of an electrical motor. For this work, signal smoothing technique is used to highlight precise feature between normal and fault condition. Subtracting the smoothed signal from the original signal gives the residuals that contains the information related to the normal or faulty condition. Using residual signal, discrete wavelet transform is performed and acquire the signal presenting fault feature well. Also, feature extraction and classification are executed by using PCA, KPCA and SVM. The actual data is acquired from POSCO for validating the proposed method.

효율적 특징벡터 추출기법와 신경회로망을 이용한 전력외란 자동 식별 (Automatic Classification of Power Quality Disturbances Using Efficient Feature Vector Extraction and Neural Networks)

  • 반지훈;김현수;남상원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1030-1032
    • /
    • 1998
  • In this paper, an efficient feature vector extraction method and MLP neural network are utilized to automatically detect and classify power quality disturbances, where the proposed classification procedure consists of the following three parts: i.e., (i) PQ disturbance detection using discrete wavelet transform. (ii) feature vector extraction from the detected disturbance. using several methods, such as FFT, DWT, Fisher's criterion. etc.. and (iii) classification of the corresponding type of each PQ disturbance by recognizing the pattern of the extracted feature vector. To demonstrate the performance and, applicability of the proposed classification algorithm. some test results obtained by analyzing 10-class PQ disturbances are also provided.

  • PDF

딥러닝과 특징 추출 기반 배터리 노화 상태 추정 방법 (Battery State-of-Health Estimation Method based on Deep-learning and Feature Engineering)

  • 장문석;이강석;배성우
    • 전력전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.332-338
    • /
    • 2022
  • This study proposes a battery state-of-health estimation method by applying a feature extraction technique. The technique that can improve estimation performance is the process of identifying and extracting meaningful data. To apply a data-driven-based aging state estimation method to batteries, health indicators are used as training data. However, limitations occur in extracting health indicators from charge/discharge cycles. This study proposes a deep-learning-based battery state-of-health estimation method that applies feature extraction techniques to compensate for this problem. According to the performance evaluation result of the proposed method, it has a low estimation error of 0.3887% based on an absolute error evaluation method.

Continuous Conditional Random Field Model for Predicting the Electrical Load of a Combined Cycle Power Plant

  • Ahn, Gilseung;Hur, Sun
    • Industrial Engineering and Management Systems
    • /
    • 제15권2호
    • /
    • pp.148-155
    • /
    • 2016
  • Existing power plants may consume significant amounts of fuel and require high operating costs, partly because of poor electrical power output estimates. This paper suggests a continuous conditional random field (C-CRF) model to predict more precisely the full-load electrical power output of a base load operated combined cycle power plant. We introduce three feature functions to model association potential and one feature function to model interaction potential. Together, these functions compose the C-CRF model, and the model is transformed into a multivariate Gaussian distribution with which the operation parameters can be modeled more efficiently. The performance of our model in estimating power output was evaluated by means of a real dataset and our model outperformed existing methods. Moreover, our model can be used to estimate confidence intervals of the predicted output and calculate several probabilities.

PC-기반의 심박변동 팍워스픽트럼밀도 분석기 설계 (The Design of PC-based Power Spectral Density Analyzer of Heart Rate Variability)

  • 김낙환;이응혁;민홍기;홍승홍
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권9호
    • /
    • pp.547-553
    • /
    • 2003
  • In this paper, we designed the PC-based analyzer of the power spectral density that could estimate the heart rate variability from time series data of R-R interval. The power spectral density estimated that it applied the autoregressive model to the measured electrocardiogram during a short period. Also, the characteristics of the designed analyzer are that it could process of the signal filtering, the generation and recomposition of time series and the feature extraction at the same time. Especially the analyzer reconstructed which applied the lowpass filter of the time series composed by the linear interpolation so as to enhance the signal-to-noise feature. We could estimate the power spectral density that confirmed a variety of power peak with low frequency range and high frequency rang of autonomic nerve by the heart rate variability.

A machine learning informed prediction of severe accident progressions in nuclear power plants

  • JinHo Song;SungJoong Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2266-2273
    • /
    • 2024
  • A machine learning platform is proposed for the diagnosis of a severe accident progression in a nuclear power plant. To predict the key parameters for accident management including lost signals, a long short term memory (LSTM) network is proposed, where multiple accident scenarios are used for training. Training and test data were produced by MELCOR simulation of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident at unit 3. Feature variables were selected among plant parameters, where the importance ranking was determined by a recursive feature elimination technique using RandomForestRegressor. To answer the question of whether a reduced order ML model could predict the complex transient response, we performed a systematic sensitivity study for the choices of target variables, the combination of training and test data, the number of feature variables, and the number of neurons to evaluate the performance of the proposed ML platform. The number of sensitivity cases was chosen to guarantee a 95 % tolerance limit with a 95 % confidence level based on Wilks' formula to quantify the uncertainty of predictions. The results of investigations indicate that the proposed ML platform consistently predicts the target variable. The median and mean predictions were close to the true value.

Offline Handwritten Numeral Recognition Using Multiple Features and SVM classifier

  • Kim, Gab-Soon;Park, Joong-Jo
    • 전기전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.526-534
    • /
    • 2015
  • In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by local shrinking and expanding operations, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where the concavity feature functions as complement to the directional features. During classification of the numeral, these three features are combined to obtain good discrimination power. The efficiency of our scheme is tested by recognition experiments on the handwritten numeral database CENPARMI, where SVM classifier with RBF kernel is used. The experimental results show the usefulness of our scheme and recognition rate of 99.10% is achieved.

특성중요도를 활용한 분류나무의 입력특성 선택효과 : 신용카드 고객이탈 사례 (Feature Selection Effect of Classification Tree Using Feature Importance : Case of Credit Card Customer Churn Prediction)

  • 윤한성
    • 디지털산업정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.1-10
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis, a model can be constructed with various machine learning algorithms, including decision tree. And feature importance has been utilized in selecting better input features that can improve performance of data analysis models for several application areas. In this paper, a method of utilizing feature importance calculated from the MDI method and its effects are investigated in the credit card customer churn prediction problem with classification trees. Compared with several random feature selections from case data, a set of input features selected from higher value of feature importance shows higher predictive power. It can be an efficient method for classifying and choosing input features necessary for improving prediction performance. The method organized in this paper can be an alternative to the selection of input features using feature importance in composing and using classification trees, including credit card customer churn prediction.

New Feature Selection Method for Text Categorization

  • Wang, Xingfeng;Kim, Hee-Cheol
    • Journal of information and communication convergence engineering
    • /
    • 제15권1호
    • /
    • pp.53-61
    • /
    • 2017
  • The preferred feature selection methods for text classification are filter-based. In a common filter-based feature selection scheme, unique scores are assigned to features; then, these features are sorted according to their scores. The last step is to add the top-N features to the feature set. In this paper, we propose an improved global feature selection scheme wherein its last step is modified to obtain a more representative feature set. The proposed method aims to improve the classification performance of global feature selection methods by creating a feature set representing all classes almost equally. For this purpose, a local feature selection method is used in the proposed method to label features according to their discriminative power on classes; these labels are used while producing the feature sets. Experimental results obtained using the well-known 20 Newsgroups and Reuters-21578 datasets with the k-nearest neighbor algorithm and a support vector machine indicate that the proposed method improves the classification performance in terms of a widely known metric ($F_1$).

Wind Power Pattern Forecasting Based on Projected Clustering and Classification Methods

  • Lee, Heon Gyu;Piao, Minghao;Shin, Yong Ho
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.283-294
    • /
    • 2015
  • A model that precisely forecasts how much wind power is generated is critical for making decisions on power generation and infrastructure updates. Existing studies have estimated wind power from wind speed using forecasting models such as ANFIS, SMO, k-NN, and ANN. This study applies a projected clustering technique to identify wind power patterns of wind turbines; profiles the resulting characteristics; and defines hourly and daily power patterns using wind power data collected over a year-long period. A wind power pattern prediction stage uses a time interval feature that is essential for producing representative patterns through a projected clustering technique along with the existing temperature and wind direction from the classifier input. During this stage, this feature is applied to the wind speed, which is the most significant input of a forecasting model. As the test results show, nine hourly power patterns and seven daily power patterns are produced with respect to the Korean wind turbines used in this study. As a result of forecasting the hourly and daily power patterns using the temperature, wind direction, and time interval features for the wind speed, the ANFIS and SMO models show an excellent performance.