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A model that precisely forecasts how much wind power 
is generated is critical for making decisions on power 
generation and infrastructure updates. Existing studies 
have estimated wind power from wind speed using 
forecasting models such as ANFIS, SMO, k-NN, and ANN. 
This study applies a projected clustering technique to 
identify wind power patterns of wind turbines; profiles the 
resulting characteristics; and defines hourly and daily 
power patterns using wind power data collected over a 
year-long period. A wind power pattern prediction stage 
uses a time interval feature that is essential for producing 
representative patterns through a projected clustering 
technique along with the existing temperature and wind 
direction from the classifier input. During this stage, this 
feature is applied to the wind speed, which is the most 
significant input of a forecasting model. As the test results 
show, nine hourly power patterns and seven daily power 
patterns are produced with respect to the Korean wind 
turbines used in this study. As a result of forecasting the 
hourly and daily power patterns using the temperature, 
wind direction, and time interval features for the wind 
speed, the ANFIS and SMO models show an excellent 
performance. 
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I. Introduction 

Wind power is the generation of electric power using 
mechanical energy converted through a wind turbine [1]. A 
wind generator can theoretically convert 59.3% of wind energy 
at maximum, but it is only practically possible to convert from 
20% to 40% of wind energy owing to existent loss factors such 
as the wing shape, mechanical friction, and generator efficiency. 
In addition, the production level of electric power generated 
from wind is irregular and sometimes cannot meet the required 
power supply. To make matters worse, the power may change 
on a large scale. Since each problem is caused from the wind 
power source, it is very hard to forecast an accurate quantity  
of wind power generation. An accurate analysis model for 
predicting wind power generation can reduce the cost needed 
to maintain the equilibrium of supply and demand of electric 
power and help in the decision-making of timely infrastructure 
updates for the wind power industry. Therefore, more exact 
prediction techniques of power patterns are indispensable for 
the efficient operation and planning of wind power generation, 
and mathematical methods such as data mining are used in 
such prediction techniques [2]–[3].  

In general, wind power generation prediction builds a power 
pattern model from related data and forecasts power patterns 
by applying a built model [4]. A variety of prediction models 
for wind power generation use wind speed as input data. At the 
learning stage of the prediction model, the relation between 
wind speed and wind power is learned, and we can predict  
the amount of wind power for a specified wind speed. The 
difference between the predicted wind power and actual 
measurement becomes the prediction error. There have been 
many comparative studies on predicting wind power based on 
wind speed. Li and others [5] applied regression and an 
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artificial neural network (ANN) model and showed that the 
ANN performed better than regression. Üstüntas and Sahin [6] 
estimated the power curve using a cluster center fuzzy logic 
(CCFL) model, which demonstrated the lowest prediction 
errors. Kusiak and others [2] suggested five non-parametric 
models for monitoring wind farm power; that is, a neural 
network (NN), M5 tree, representative tree, bagging tree, and 
k-nearest neighbor (k-NN), the last of which showed the best 
performance. Unlike existing studies, Schlechtingen and others 
[7] added ambient temperature and wind direction in addition 
to wind speed as prediction model inputs, as well as applying 
four data mining techniques. The applied prediction models 
were CCFL, NNs, k-NN, and an adaptive neuro-fuzzy 
interference system (ANFIS). Their test results showed that the 
prediction model errors were reduced when the temperature 
and wind direction were applied instead of the wind speed only. 
When the four prediction models were compared with each 
other, ANFIS showed the lowest prediction errors and the 
possibility of early detection of abnormal power output. 
Rahmani and others [8] applied a hybrid technique of ant 
colony optimization and particle swarm optimization on wind 
speed and environment temperature for short-term wind energy 
forecasting. The mean absolute percentage error was used   
to assess the accuracy of the model. As a result of the 
aforementioned related studies, it can be summarized that 
ANN, k-NN, and ANFIS are good techniques for power 
generation and power curve estimations. However, existing 
studies applying these techniques did not analyze generation 
patterns varying with time (hour, day, and month). They 
estimated the power generation output (kW) with respect to 
wind speed input (m/s) by building a power curve based on a 
prediction model. This is the main difference between them 
and our suggested model, of which this study forecasts power 
generation for each time stamp. Moreover, since they only 
estimate the power output based on wind speed, temperature, 
and direction, there exists a limitation in that most of them are 
only short-term forecasting models. Recently, Azad and others 
[9] proposed statistical-based and NN-based approaches to 
predict the hourly wind speed data of the subsequent year in 
their long-term wind speed forecasting study. The proposed 
approaches exhibited small error rates, with values occurring in 
the range 0.8 m/s to 0.9 m/s. Even though wind speed and 
output power of a wind generator have a proportional relation 
(Schlechtingen [7] insisted that temperature and wind direction 
affect wind power), our study predicts not wind power but 
long-term hourly wind speed.  

Wind power patterns have significantly varying power 
generation depending on the season and time. Therefore, it is 
necessary to create accurate wind power patterns under 
different time conditions and to analyze their characteristics.  

  

Fig. 1. Wind power pattern profiling and forecasting framework.
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For this study, we generate wind power patterns of wind 
turbines and use a projected clustering technique to profile  
the resulting characteristics. Traditional clustering algorithms 
discover clusters using all data dimensions. Most of the time, 
however, time-series data, such as power patterns, are 
characterized based on time-interval features in the subset of 
the dimensions. As the number of dimensions increases, 
distance measures of the clustering algorithms become more 
and more meaningless [10]. Thus, the application of projected 
clustering methods allows selecting of the cluster composition 
of similar power patterns and feature vectors that are the subset 
of all dimensions used for that cluster composition.  

Figure 1 shows the framework of wind power pattern 
profiling and forecasting suggested in this study. From Fig. 1, 
the following steps can be identified: 
1. Data generation and preprocessing. 

a) The recorded wind power value based on time of use of the 
wind turbines is calculated using the values of different 
time granularities, such as hour and day. 

b) Temperature, wind speed, and direction data are induced to 
generate the training and testing datasets; the wind speed is 
the value measured at the same time as the wind power.  

2. Power patterns clustering.  
a) From the wind power patterns of the wind turbines, the 

patterns with high similarity are grouped through a 
projected cluster analysis. 

b) Representative power patterns are then created from each 
group, and class labels are created for the groups. 

3. Building the prediction models. 
a) As a result of the cluster analysis, we can generate the  

wind speed values corresponding to the time intervals by 
detecting those intervals that belong to subsets of the time 
dimensions applied to the algorithms. 
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b) These time-interval features for the wind speed are 
employed as inputs for prediction model learning along 
with the temperature and wind direction.  

c) As the output of the prediction model, class labels 
corresponding to the representative power patterns of each 
group are assigned to the new data.  

This study has three contributions. Firstly, representative 
power patterns of wind turbines operated in Korea are found, 
and these features are then profiled by subspace projection 
methods. Secondly, this study proposes a way to select task-
relevant features instead of wind speed in a whole time 
dimension (selecting time-interval features, temperature, and 
wind direction through subspace discovery over a whole time 
dimension) so as to build a highly accurate prediction model. 
Finally, we apply the existing techniques in the wind power 
prediction research and suggest the most appropriate method, 
upon assessment, for predicting the profiled representative 
power patterns.  

The rest of this paper is organized as follows. In Section II, 
we review previous studies of projected clustering approaches 
and point out their characteristics. In Section III, we introduce 
state-of-the-art classifiers for predicting power patterns. In 
Section IV, we present the experimental results and discuss 
issues. Finally, in Section V, we provide some concluding 
remarks.  

II. Projected Clustering Methods 

In this study, we use projected clustering approaches for 
discovering representative power patterns. Projected clustering 
is a method for detecting clusters with the highest similarity 
from the subsets of all data dimensions. The biggest difference 
between projected clustering and traditional clustering methods 
is that in a projected clustering approach, the detection of 
various subsets is carried out based on the fact that subsets 
differ from each other and that they include meaningful clusters, 
rather than considering all dimensions given during the 
clustering process [11]. For example, if time is a dimension and 
power generation is an object in the data where generated wind 
power values are recorded, through the projected clustering 
shown in Fig. 2, then time intervals (t7 through t15) can be 
detected, which are subsets having discriminating power 
among different clusters. Projected clustering approaches can 
be divided into three paradigms based on the detection 
methods of the subsets [12]. 

The first paradigm is to divide a data space into grid-cells 
(cell-based) and form clusters of sufficient density from the 
cells. The basic concept is to first define grid-cell sets before 
assigning objects to suitable cells and to then calculate the 
density of each cell. Next, cells with a density of a certain  

 

Fig. 2. Different power patterns of different clusters. 
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threshold or lower are removed and clusters are built from a 
series of cells with high density. A popular cell-based method, 
CLIQUE [13], is a grid-based clustering algorithm that detects 
clusters of subsets through certain procedures. When multi-
dimensional data points of large capacity are given, the data 
space, in general, is not uniformly occupied by the data points. 
The clustering of this approach discriminates sparse and 
crowded regions in space (or unit) and detects the entire 
distribution type of the datasets. Clustering of CLIQUE is 
defined as the biggest group of connected dense units. 
SCHISM [14] finds subsets by using a “support” and 
Chernoff–Hoeffding bound concept and determines the 
interesting subsets using a depth-first search and backtracking.  

The second paradigm is density-based projected clustering, 
which utilizes an algorithm to identify clusters. In this 
algorithm, a cluster is defined to be a dense area (that is, a 
group of points that are closely packed together, whereby each 
point has many nearby neighbors) separated by sparsely 
populated areas (that is, low-density areas). Though the overall 
clustering concept is based on DBSCAN [15], the density 
calculation here considers only the relevant dimensions. The 
representative algorithm is FIRES [16], and it applies an 
efficient filter-refinement method. Above all, the existing base-
clusters are created, and those that fail to meet the given density 
conditions are removed in the filtering stage. Next, the    
base-clusters are merged to create the maximal dimensional 
projected cluster approximations. Lastly, the final refined 
clusters are built during the refinement stage. The SUBCLU 
[17] is a DBSCAN-based greedy algorithm for projected 
clustering. Unlike grid-based approaches, it can detect clusters 
with arbitrary shapes. 

The third paradigm is a clustering-oriented approach. As the 
data dimension increases in the clustering for high-dimensional 
data, clustering that considers all dimensions can hinder the 
performance remarkably owing to the presence of sparse data. 
PROCLUS [18], a famous algorithm, starts from a single 
dimensional space. Instead, the algorithm of the third paradigm 
begins by searching the initial estimation regarding clusters in a 
high-dimensional space. Weight is provided for each cluster per 
each dimension, and the renewed weight is used to create  
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Table 1. Properties of the three paradigms. 

Paradigm Algorithm Properties 

CLIQUE 
Fixed threshold and grid size, pruning by 
monotonicity property 

Cell-based 

SCHISM 
Enhanced CLIQUE by variable threshold, 
using heuristics for pruning 

FIRES 
Variable density threshold, based on filter-
refinement architecture to drop irrelevant 
base-clusters Density-based 

SUBCLU 
Fixed density threshold, pruning by 
monotonicity property 

PROCLUS 
Fixed cluster number, iteratively improving 
result like k-means, partitioning Clustering-

oriented 
STATPC 

Statistical tests, reducing result size by 
redundancy elimination 

 

 
clusters again for the next iteration. STATPC [19] detects 
relevant subsets based on objects and builds candidate 
subspaces, which are refined to build local optimal projected 
clusters. Finally a greedy search algorithm is used to review all 
subspaces and build optimal clusters.  

Table 1 shows the properties of the clustering algorithms 
used in our study (all properties of the clustering algorithms  
are stated in [12]). The important parameter settings and 
performance evaluation results of the algorithms are described 
in detail in Section IV. 

III. Classification Model for Predicting Representative 
Power Patterns 

Feature vectors for the classifier’s supervised learning 
include prior information such as the temperature, wind 
direction, and wind speed, which are time-interval features; 
class labels are representative power patterns built through 
clustering. Among all the features used for the supervised 
learning, the wind speed affects the power output the most, 
while the wind speed and wind power are measured for the 
same hour. Therefore, the model considers only the wind speed 
values, which is a time-dimensional subset (time-intervals 
features) selected during the clustering stage. This has the effect 
of relevant feature selection and a dimensionality reduction to 
build accurate and fast classifiers.  

For instance, Fig. 3 describes the time dimension involved in 
building three clusters, C_0, C_1, and C_2. Time intervals (f1, 
f2, f3, f4); that is, the subsets of all time dimensions that are 
applied to the clustering of the wind power patterns, are applied 
to the wind speed equally, and only the wind speed value 
corresponding to these time intervals is drawn as a feature 
vector. The classifiers used in the study are the sequential  

 

Fig. 3. Example of time-interval features for wind speed. 
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minimal optimization (SMO) algorithm, which shows an 
excellent performance, and AFNIS, k-NN, and ANN, which 
were all evaluated in related papers [8]–[9].  

1. ANFIS 

ANFIS [20] is a kind of ANN based on a Takagi–Sugeno 
fuzzy inference system. Since it integrates both NNs and fuzzy 
logic principles, it has the potential to capture the benefits of 
both in a single framework. Its inference system corresponds to 
a set of fuzzy IF–THEN rules that have the learning capability 
to approximate nonlinear functions. As wind power prediction 
includes the uncertainty of the input/output variables, power 
generation is determined through learning. Therefore, 
employing ANFIS can help with the accuracy of prediction, as 
modeling a prediction system mathematically is difficult, and 
the nonlinearity is contained.  

Figure 4 shows the ANFIS structure utilized in this study, 
and the layer properties and learning procedure are as follows:  
■ Layer 1. A given node, i, has O1,i = µAi

(x), i = 1, 2, and O1,i = 
µBi–2(y), i = 3, 4, where x is the input value of node i, Ai 

indicates the fuzzy set related to the function of the node, and 
O1,i is the membership function that represents the membership 
degree of the input value x for Ai; and µAi

 is put into (1) in 
various ways and can be written as (2) through a parameter 
adjustment. 

2
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■ Layer 2. A T-norm computation is conducted, and each  
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Fig. 4. Structure of ANFIS. 
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membership function is multiplied and presented as (3) below. 

2, ( ) for 1, 2.
ii i BO y i             (3) 

■ Layer 3. The i rule is normalized to perform computations 
such as (4) below.  

3,
1 2

for 1, 2.i
iiO i




 
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
         (4) 

■ Layer 4. The output function of each rule is multiplied by  
the compatibility obtained from layer 3, such as (5). The 
parameters pi, qi, and ri are determined in such a way as to 
minimize errors. 

4, ( ) for 1, 2.i i i i i i iO f p x q y r i           (5) 

■ Layer 5. The output is calculated through the above process.  

5, .i i i
i i i

i i

f
O f





   

             (6) 

2. SVM by SMO 

The SMO algorithm [21] is appropriate to realize the 
optimization of the support vector machine (SVM), which is 
offered by a different normalization value to the class for 
imbalanced learning. SMO is an algorithm for solving the 
quadratic programming problem that arises during the training 
of support vector machines and is widely used for training such 
machines. The learning stage of the SMO algorithm detects an 
optimal hyperplane using training data and classifies it using 
test data. Although the SMO algorithm provides the Poly and 
radial basis function (RBF) kernels, the RBF kernel is 
generally used in many cases for the following reasons. The 
RBF kernel can handle nonlinear relationships between classes 
and attributes and has fewer hyper-parameters that influence 
the complexity of the model selection than the Poly kernel. The 
RBF kernel function is as follows: 

2

2

|| ||
( , ) exp .

x x
K x x


    
 

           (7) 

For the test, the RBF kernel was chosen as the kernel 
function. A grid-search approach using a 10-fold cross 
validation was carried out to determine the optimal value for 
each dataset of parameters C and γ, and as a result, the 

parameter range was determined as  5 3 152 , 2 , ... , 2C    to 

 15 13 32 , 2 , ... , 2   . 

3. k-NN 

k-NN is a basic instance-based learner that finds the training 
instance closest in Euclidean distance to the given test instance 
and predicts the same class as this training instance [22]. This 
paper used the IBk algorithm; that is, the k-NN classifier, which 
is provided by Java WEKA [23]. The number of nearest 
neighbors can be specified explicitly in an object editor or 
determined automatically using a leave-one-out cross 
validation, subject to an upper limit given by the specified 
value. The predictions from more than one neighbor can be 
weighted according to their distance from the test instance, and 
two different formulas are implemented for converting the 
distance into a weight. The number of training instances 
maintained by the classifier can be restricted by setting the 
window size option. As new training instances are added, the 
oldest ones are removed to maintain the number of training 
instances at this size. Parameter k is attested by setting a default 
value of 1 to each class.  

4. ANN 

ANN is useful to consider complicated nonlinearity, while a 
multilayer perceptron (MLP) NN is currently utilized for time-
series forecasting. An ANN model consists of learning, 
parameter coordination, verification, and forecasting steps. At 
the learning step, the structure of the NN is determined by 
learning the nonlinear relationship between input and output 
variables using the backpropagation algorithm. The verification 
stage attempts to predict using the structure determined by 
learning and minimizes the error with ANN model learning. 
The accuracy of forecasted wind power patterns is verified by 
analyzing the performance error with mean absolute error 
(MAE). In the study, an MLP model provided by Java WEKA 
[23] was used. The nodes in this network are all sigmoid 
(except for when the class is numeric, in which case the output 
nodes become unthreshold linear units).  

IV. Experimental Results and Discussion 

1. Datasets and Data Preprocessing  

Wind power generation data were collected from three wind  
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Fig. 5. Hourly power patterns of two turbines. 
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Table 2. Extracted features from raw data. 

Feature Description 

Timestamp <year / month / day / hour> 

Wind turbine ID Turbine ID code 

Wind power Wind power generation measured by hour  

Wind speed Wind speed measured by hour 

Ambient temp. Ambient temperature of turbines measured  

Wind direction Wind direction measured 

 

 
turbines with different regional characteristics in Korea for a 
year throughout the four seasons in 2010. Two of them (WT1 
and WT2) were operated on land, and the other on an island 
(WT3). As ten minutes of saved wind power can be changed 
into a value of various time granularities (day, week, and 
month), wind power patterns of different time units can be built.  
Definition 1. A time schema (TS) is defined as the time 
granularity and its domain. The form of the schema is as 
follows: 

TS = (G : D),               (8) 
where G is a time granularity, and D is the domain value of 
time granularity G as a set of positive integer numbers. In the 
case of TS = (day:{1–30}), <20> is valid for expressing the 
twentieth day, whereas <31> is not valid.  
Definition 2. The power pattern of each turbine can be 
described as below for the given TS 

TS 1 | |{ , ... , },w w w
Dp p p              (9) 

where w is the turbine identifier used to measure the power 
generation, and pw is the total power generation during the 
given TS. If TS = (hour:{1–24}), then the power patterns are 
illustrated using hour units and one-day power patterns that 
have a total of 24 dimensions. Figure 5 shows an example of 
hourly power patterns.  

The above hourly power patterns show the change in power  

Table 3. Data distribution after data preprocessing. 

Data type 
Wind  

turbine ID

Training 

(80%) 

Testing 

(20%) 
Total 

WT1 5,792 1,448 7,240 

WT2 5,768 1,442 7,210 
Type 1: 

TS = (hour:{1–24})
WT3 4,832 1,208 6,040 

WT1 285 71 356 

WT2 280 70 350 
Type 2: 

TS = (day:{1–30})
WT3 216 54 270 

 

 
generation of two turbines for a day-long period. The wind 
energy data used in this paper are shown in Table 2, while the 
distribution of the training dataset and test dataset preprocessed 
by the two types of time units is shown in Table 3.  

2. Projected Clustering for Profiling Power Patterns 

Building representative power patterns through a clustering 
analysis of the wind power patterns can characterize the change 
in wind power generation patterns depending on the time of 
objects inside the clusters. The cluster analysis stage describes 
the cluster analysis results of only SCHISM, FIRES, and 
PROCLUS, which showed excellent performance among the 
six algorithms introduced in Table 1. The projected clustering 
algorithm uses Java WEKA’s [24] OpenSubpace, which is    
a data mining tool. OpenSubspace supports up-to-date 
performance evaluators to facilitate studies on projected 
clustering. For unsupervised learning methods such as 
clustering, it is difficult to provide appropriate parameter 
settings without prior knowledge on the data. In the case of the 
k-means algorithm, for instance, users face a difficulty in 
defining the appropriate number of clusters in advance. 
OpenSubspace supports parameter bracketing for selecting the 
most appropriate parameter values. However, as most 
parameters are supposed to be set as a range and not as a 
specific value, more repeated works are needed than in 
traditional methods to determine the optimal range. For 
example, the PROCLUS algorithm uses parameter C as the 
number of clusters and parameter D as the number of 
dimensions. If the range of these two parameters is set at C = 
{1–5}, D = {5–8} by the user, then a total of 20 individual 
results need to be analyzed to find the optimal parameter pair 
of (C, D). The optimal parameter settings of each algorithm for 
the two types of data corresponding to the hour and day in the 
test are given in Tables 4 and 5, respectively. 

Because the projected clustering algorithm groups similar 
power generation patterns for the time dimensions in the  
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Table 4. Parameter bracketing for Type 1 (TS = (hour:{1–24})). 

Algorithm Parameter From Offset Op Steps To 

TAU 0.1 0.1 + 10 1.0 

XI 1 1 + 24 24 

U 0.05 0 + 1 0.05

Cell-based 

(SCHISM) 

Total number of experiments: 240 (steps: 10×24×1) 

BASE_DBSCAN 
_EPSILON 

1.0 0 + 1 1.0 

BASE_DBSCAN 
_MINPTS 

100 0 + 1 100

GRAPH_K 15 1 + 4 18 

GRAPH_MIN 
CLU 

1 1 + 4 4 

GRAPH_MU 1 1 + 4 4 

GRAPH_SPLIT 0.66 0 + 1 0.66

POST_DBSCAN 
_EPSILON 

300 0 + 1 300

POST_DBSCAN 
_MINPTS 

24 0 + 1 24 

PRE_MINIMUM 
PERCENT 

10 00 + 1 10 

Density- 

based 

(FIRES) 

Total number of experiments: 64 (steps: 1×1×4×4×4×1×
1×1×1) 

average 
Demensions 

1 1 + 24 24 

numberOfClusters 2 1 + 8 9 

Clustering- 
oriented 

(PROCLUS) 
Total number of experiments: 192 (steps: 24 × 18) 

 

 
training datasets and classifies which group the test data objects 
belong to out of the defined clusters, it includes the clustering 
and classification methods together. Therefore, an evaluation 
measure such as the sum of the squared error or normalized 
mutual information [25] for a traditional clustering method is 
inappropriate. The present study used evaluation measures 
such as the precision, recall, F1-value, and accuracy to evaluate 
the three clustering algorithms. Formal definitions of these 
measures are given below. 

Precision TP/(TP FP)  ,            (10) 

Recall TP/(TP FN)  ,             (11) 

1

2 Precision Recall

Precision Recall
F

 



,            (12) 

TP TN
Accuracy

TP TN FP FN




  
.          (13) 

In (10)–(13), we use the following abbreviations: true positive  

Table 5. Parameter bracketing for Type 2 (TS = (day:{1–30})). 

Algorithm Parameter From Offset Op Steps To 

TAU 0.1 0.1 + 10 1.0 

XI 1 1 + 30 30 

U 0.05 0 + 1 0.05

Cell-based

(SCHISM)

Total number of experiments: 300 (steps: 10×30×1) 

BASE_DBSCAN
_EPSILON 

1.0 0 + 1 1.0 

BASE_DBSCAN
_MINPTS 

100 0 + 1 100

GRAPH_K 15 1 + 4 18 

GRAPH_MIN
CLU 

1 1 + 4 4 

GRAPH_MU 1 1 + 4 4 

GRAPH_SPLIT 0.66 0 + 1 0.66

POST_DBSCAN
_EPSILON 

300 0 + 1 300

POST_DBSCAN
_MINPTS 

30 0 + 1 30 

PRE_MINIMUM
PERCENT 

10 0 + 1 10 

Density- 

based 

(FIRES) 

Total number of experiments: 64 (steps: 1×1×4×4×4×1×
1×1×1) 

average 
Demensions 

1 1 + 30 30 

numberOfClusters 2 1 + 9 10 

Clustering-
oriented 

(PROCLUS)
Total number of experiments: 270 (steps: 30 × 9) 

 

 
(TP), true negative (TN), false positive (FP), and false negative 
(FN). 

All tests for the three clustering measures use 10-fold cross 
validation. In addition, the original classes used to evaluate the 
algorithms in the cluster analysis stage are the wind turbine IDs 
(WT1, WT2, WT3) of the three regions. Table 6 shows the 
result of the evaluators based on the clustering methods for the 
two datasets. 

In both data types, the test results show that the PROCLUS 
method, which is a clustering-oriented approach, achieves a 
good performance. In addition, Fig. 6 shows an accuracy 
comparison between SCHISM, FIRES, and PROCLUS and 
illustrates that PROCLUS outperforms the other clustering 
methods. 

Based on the results in Fig. 4, the PROCLUS algorithm was 
used, and the clustering results using different time units are 
presented in Table 7. PROCLUS has two parameters; that is, 
averageDimension-and numberOfClusters. Data type 1 was 
applied using fourteen time dimensions (hour) depending on 
the parameter bracketing set using the range shown in Table 4,  
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Table 6. Description of the summary results. 

Data Algorithm Precision Recall F1 Class 

0.748 0.873 0.805 WT1 

0.688 0.550 0.611 WT2 
Cell-based 

(SCHISM) 
0.647 0.423 0.512 WT3 

0.762 0.912 0.830 WT1 

0.655 0.475 0.551 WT2 Density- 
based (FIRES) 

0.824 0.538 0.651 WT3 

0.809 0.873 0.881 WT1 

0.769 0.750 0.937 WT2 

TS = 
(hour: 

{1–24}) 

Clustering-
oriented 

(PROCLUS) 
0.579 0.423 0.900 WT3 

0.748 0.873 0.805 WT1 

0.688 0.550 0.611 WT2 
Cell-based 

(SCHISM) 
0.647 0.423 0.512 WT3 

0.787 0.833 0.810 WT1 

0.694 0.625 0.658 WT2 Density- 
based (FIRES) 

0.500 0.462 0.480 WT3 

0.88 0.863 0.871 WT1 

0.882 0.925 0.871 WT2 

TS = 
(day: 

{1–30}) 

Clustering-
oriented 

(PROCLUS) 
0.565 0.500 0.531 WT3 

 

 

 

Fig. 6. Accuracy comparison between SCHISM, FIRES, and 
PROCLUS for two different datasets. 
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Table 7. Confusion matrix of original groups vs. discovered clusters.

Data type Parameter Discovered clusters 

D=14, C=5 C1 C2 C3 C4 C5 

WT1 5 455 1053 4481 0 

WT2 4801 115 0 807 45 

Type 1: 

TS = (hour: 

{1–24}) 
WT3 560 3517 9 743 1 

D=9, C=4 C1 C2 C3 C4 

WT1 234 50 0 1 

WT2 0 32 83 180 

Type 2: 

TS = (day: 

{1–30}) 
WT3 0 0 51 229 

— 

 

 

Fig. 7. Hourly representative power patterns: (a) normalized 
power patterns for WT1 dataset, (b) normalized power 
patterns for WT2 dataset, and (c) normalized power 
patterns for WT3 dataset. 
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and the optimal number of clusters was determined to be five 
for each wind turbine, while data type 2 was applied using nine 
time dimensions (day) and four clusters for each wind turbine. 

For WT1, WT2, and WT3, the original group in Table 7, 
specific clusters detected from the PROCLUS analysis results 
are profiled as representative power patterns. The profiling 
method is simple — the representative patterns are built by 
calculating the mean value of the power patterns included in 
the specific groups. 

Figure 7 shows the representative power patterns by clusters 
after the application of the projected clustering algorithm for 
hourly preprocessed data for the three turbines. Three 
representative power patterns were built for the original groups, 
WT1, WT2, and WT3. Although clustering was conducted 
through the algorithms, groups with a relatively small number 
of members are excluded from the profiling. For example, the  
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Fig. 8. Daily representative power patterns: (a) normalized power 
patterns for WT1 dataset, (b) normalized power patterns 
for WT2 dataset, and (c) normalized power patterns for 
WT3 dataset. 
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WT1 dataset of type 1 in Table 7 comprises four clusters, C1 
through C4. However, C1 is considered as a minor pattern or 
outlier because there are only five members in C1; hence, it can 
be removed. WT2’s C5 and WT3’s C3 and C5 are also 
removed for the same reason; thus, nine clusters are built for  
the representative patterns of type 1. Two daily representative 
power patterns are built from WT1 and WT3 each, and three 
from WT2, as shown in Fig. 8. New specific class labels are 
built for the three turbines of the original groups. For example, 
as WT1 comprises two different clusters in the daily power 
pattern analysis, WT1 is segmented into WT1-1 and WT1-2. 
The same method can be applied to WT2, for example, WT2-1, 
WT2-2, and WT2-3. Therefore, there are seven groups in total 
to predict the daily power patterns and nine groups to predict 
the hourly power patterns. These specific groups are  

Table 8. Description of summary results for hourly power patterns.

Data Classifier Precision Recall F1 Class 

0.824 0.933 0.875 WT1-1 

0.783 0.783 0.783 WT1-2 

0.813 0.765 0.788 WT1-3 

0.870 0.800 0.833 WT2-1 

0.765 0.929 0.839 WT2-2 

0.813 0.897 0.852 WT2-3 

0.857 0.750 0.800 WT3-1 

0.714 0.714 0.714 WT3-2 

ANFIS 

1.000 0.800 0.889 WT3-3 

0.857 0.800 0.828 WT1-1 

0.630 0.739 0.680 WT1-2 

0.778 0.824 0.800 WT1-3 

0.704 0.760 0.731 WT2-1 

0.786 0.786 0.786 WT2-2 

0.769 0.690 0.727 WT2-3 

0.824 0.875 0.848 WT3-1 

0.636 0.500 0.560 WT3-2 

SMO 

0.929 0.867 0.897 WT3-3 

0.917 0.733 0.815 WT1-1 

0.556 0.652 0.600 WT1-2 

0.778 0.824 0.800 WT1-3 

0.833 0.600 0.698 WT2-1 

0.714 0.714 0.714 WT2-2 

0.758 0.862 0.806 WT2-3 

0.647 0.688 0.667 WT3-1 

0.643 0.643 0.643 WT3-2 

IBk 

0.867 0.867 0.867 WT3-3 

0.813 0.867 0.839 WT1-1 

0.552 0.696 0.615 WT1-2 

0.867 0.765 0.813 WT1-3 

0.727 0.640 0.681 WT2-1 

0.857 0.857 0.857 WT2-2 

0.818 0.931 0.871 WT2-3 

0.938 0.938 0.938 WT3-1 

0.727 0.571 0.640 WT3-2 

TS = 

(hour: 

{1–24})

MLP 

1.000 0.800 0.889 WT3-3 

 

 
considered as class labels for supervised learning in the 
classification stage.  

Since the representative power patterns (through projected 
clustering methods) found in this study were calculated from  
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Table 9. Description of summary results for daily power patterns.

Data classifier Precision Recall F1 Class 

0.945 0.960 0.952 WT1-1 

1.000 1.000 1.000 WT1-2 

0.778 0.961 0.817 WT2-1 

0.860 0.836 0.848 WT2-2 

0.779 0.698 0.736 WT2-3 

0.926 0.936 0.931 WT3-1 

ANFIS 

0.992 0.992 0.992 WT3-2 

0.932 0.984 0.957 WT1-1 

1.000 1.000 1.000 WT1-2 

0.870 0.934 0.901 WT2-1 

0.914 0.873 0.893 WT2-2 

0.874 0.825 0.849 WT2-3 

0.946 0.936 0.941 WT3-1 

SMO 

1.000 0.976 0.988 WT3-2 

0.953 0.976 0.964 WT1-1 

1.000 0.991 0.995 WT1-2 

0.656 0.672 0.664 WT2-1 

0.866 0.882 0.874 WT2-2 

0.594 0.603 0.598 WT2-3 

0.989 0.915 0.950 WT3-1 

IBk 

0.983 0.967 0.975 WT3-2 

0.946 0.984 0.965 WT1-1 

0.973 1.000 0.987 WT1-2 

0.886 0.893 0.890 WT2-1 

0.896 0.864 0.880 WT2-2 

0.837 0.817 0.827 WT2-3 

0.969 0.989 0.979 WT3-1 

TS = 
(day: 

{1–30}) 

MLP 

0.992 0.959 0.975 WT3-2 

 

 
data obtained over a year-long study, long-term forecasting such 
as monthly, seasonal, and yearly patterns is impossible. Because 
Korea has four distinct seasons, if we were to build a10-year, or 
more than 20-year, dataset of turbine power patterns (Korean 
meteorological data and wind power generation data), similar in 
length to that done by Azad and others [9], then more accurate 
representative power patterns can be generated. Moreover, we 
can analyze minor patterns in detail, such as those that were 
eliminated when we used big size data (see Table 7), and 
generate new representative patterns.  

3. Performance Evaluation of Classification Models  

The accuracy of the three classification models used to  

Table 10. Comparison of classifier error rates. 

Data type Classifier MAE RMSE 

ANFIS 0.0536 0.1744 

SMO 0.1751 0.2550 

IBk 0.0595 0.2440 

TS = 

(hour:{1–24})

MLP 0.0543 0.2137 

ANFIS 0.0319 0.1581 

SMO 0.0198 0.1280 

IBk 0.0509 0.1749 

TS = 

(day:{1–30})

MLP 0.0234 0.1378 

 

 

predict the hourly and daily power patterns is evaluated based 
on the precision, recall, and F1-values of (10)–(12). All 
evaluation measures were obtained using a stratified 10-fold 
cross validation for all classes. First, Table 8 shows the 
evaluation results for the hourly power pattern prediction 
model. Table 9 shows the performance evaluation results of the 
classifiers for seven classes for daily power pattern prediction. 

Nine classes in respect of hourly power patterns are 
discovered by the projected clustering algorithm, and ANFIS 
shows a better performance than the other two as an accurate 
classifier for each class. In addition, WT1-1, WT3-1, and 
WT3-3 show better class prediction performances than the 
other classes. As a result of daily power patterns, the 
comparison results indicate that the SMO and MLP algorithms 
perform better than the two classifiers with different algorithms. 
As this daily power patterns prediction is an evaluation of a 
smaller amount of data and classes compared with hourly  
power pattern prediction, all classifiers generally show better 
results compared to the hourly patterns. 

Table 10 compares the error rates of the classifiers for the 
hourly and daily power pattern predictions, where the 
measuring methods used were the MAE and root-mean-square  
error (RMSE). ANFIS also shows the lowest error rate (MAE: 
about 0.05, RMSE: about 0.18) for the hourly power pattern 
prediction, whereas SMO and MLP show the lowest error rate 
(MAE: about 0.2 to 0.3, RMSE: about 0.13 to 0.16) for the 
daily power pattern prediction.  

In this study, we define a class label by generating 
representative patterns of each turbine using PROCLUS and 
assign the representative patterns through learning various 
forecasting models. Overall, the performance of the proposed 
forecasting model shows a low rate of error. However, the 
important point in wind power pattern forecasting is the 
generation of highly reliable and precise representative patterns  
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by clustering; therefore, application of a variety of clustering 
methods should be pursued. The proposed method in this study 
enables experts and users in the wind power generation 
industry to predict in advance the production and variation of 
electric power by finding the production patterns of wind 
turbines in diverse time units from weather data.  

V. Conclusion 

This paper used three projected clustering approaches to 
discover hourly and daily representative power patterns from 
data measured from wind turbines. As subsets of all 
dimensions required for clustering and an appropriate 
composition of the clusters were used concurrently, the 
removal of noisy data and the use of a feature selection 
function are included. The optimal number of clusters was 
determined using parameter bracketing provided by 
OpenSubspace, and PROCLUS, which is a clustering-oriented 
approach, produced the best results. Nine hourly and seven 
daily power patterns were profiled as representative patterns of 
the wind turbines in the three regions of Korea. The time-
interval features for wind speed, temperature, and wind 
direction were also used as feature vectors to accurately predict 
the profiled representative power patterns. The prediction 
model test applied the ANFIS, SMO, k-NN, and MLP 
algorithms; the precision, recall, and F1-value as the accuracy 
evaluation criteria; and MAE and RMSE as the indexes to 
measure the error rate. As a result, ANFIS recorded the highest 
accuracy and lowest error rate for the hourly power pattern 
prediction, whereas SMO and MLP did the same for the  
daily power pattern prediction. The wind power generation 
prediction model suggested by this study can predict the wind 
power patterns of various time units, in theory. However, 
owing to the limitations of the dataset used, the discovery of 
various representative power patterns was difficult, and long-
term forecasting such as discovering the monthly or yearly 
power patterns was impossible. Currently, Korea’s wind power 
generation data continue to be accumulated and refined. 
Therefore, long-term forecasting of wind power generation 
patterns will be possible in future studies. 
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