• Title/Summary/Keyword: Power Electronic Converters

Search Result 173, Processing Time 0.021 seconds

Power Loss Analysis of Transformer Caused By Current Harmonics (전류 고조파에 기인하는 변압기 손실 해석)

  • Jang, Seungyong;Han, Sanghoon;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.34-41
    • /
    • 2016
  • This study investigates transformer losses caused by current harmonics. Electrical transformers are designed to work under sinusoidal voltage and current waves at a rated frequency. Recently, various nonlinear loads, such as power electronic converters, are connected to a power system; these converters generate current harmonics. Current harmonics increase power loss in transformers, which results in several problems, including temperature increase of the transformer and insulation damage. These problems will eventually shorten the operational life of the transformer. In this study, different types of losses caused by current harmonics in three-phase transformers are studied under linear and nonlinear load conditions. Linear loads are simulated and experimented on using pure resistance load, whereas nonlinear loads are simulated and experimented on using a three-phase twelve-pulse thyristor full-bridge rectifier. The different types of losses in three-phase transformers are evaluated analytically through the experimental result and simulation in PSiM.

Optimal SOC Reference Based Active Cell Balancing on a Common Energy Bus of Battery

  • Bae, SunHo;Park, Jung-Wook;Lee, Soo Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • This paper presents a study on the state-of-charge (SOC) reference based active cell balancing in real-time. The optimal references of SOC are determined by using the proposed active cell balancing system with the bidirectional DC/DC converters via the dual active bridge (DAB) type. Then, the energies between cells can be balanced by the power flow control of DAB based bidirectional DC/DC converters. That is, it provides the effective management of battery by transferring energy from the strong cell to the weak one until the cell voltages are equalized to the same level and therefore improving the additional charging capacity of battery. In particular, the cell aging of battery and power loss caused from energy transfer are considered. The performances of proposed active cell balancing system are evaluated by an electromagnetic transient program (EMTP) simulation. Then, the experimental prototype is implemented in hardware to verify the usefulness of proposed system.

Predictive Current Control of Four-Quadrant Converters Based on Specific Sampling Method and Modified Z-Transform

  • Zhang, Gang;Qian, Jianglin;Liu, Zhigang;Tian, Zhongbei
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.179-189
    • /
    • 2019
  • Four-quadrant converters (4QCs) are widely used as AC-DC power conversion interfaces in many areas. A control delay commonly exists in the digital implementation process of 4QCs, especially for high power 4QCs with a low switching frequency. This usually results in alternating current distortion, increased current harmonic content and system instability. In this paper, the control delay is divided into a computation delay and a PWM delay. The impact of the control delay on the performance of a 4QC is briefly analyzed. To obtain a fundamental value of AC current that is as accurately as possible, a specific sampling method considering the PWM pattern is introduced. Then a current predictive control based on a modified z-transform is proposed, which is effective in reducing the control delay and easy in terms of digital implementation. In addition, it does not depend on object models and parameters. The feasibility and effectiveness of the proposed predictive current control method is verified by simulation and experimental results.

Application of a C-Type Filter Based LCFL Output Filter to Shunt Active Power Filters

  • Liu, Cong;Dai, Ke;Duan, Kewei;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1058-1069
    • /
    • 2013
  • This paper proposes and designs a new output filter called an LCFL filter for application to three phase three wire shunt active power filters (SAPF). This LCFL filter is derived from a traditional LCL filter by replacing its capacitor with a C-type filter, and then constructing an L-C-type Filter-L (LCFL) topology. The LCFL filter can provide better switching ripple attenuation capability than traditional passive damped LCL filters. The LC branch series resonant frequency of the LCFL filter is set at the switching frequency, which can bypass most of the switching harmonic current generated by a SAPF converter. As a result, the power losses in the damping resistor of the LCFL filter can be reduced when compared to traditional passive damped LCL filters. The principle and parameter design of the LCFL filter are presented in this paper, as well as a comparison to traditional passive damped LCL filters. Simulation and experimental results are presented to validate the theoretical analyses and effectiveness of the LCFL filter.

New Active Damping Strategy for LCL-Filter-Based Grid-Connected Inverters with Harmonics Compensation

  • Hu, Guozhen;Chen, Changsong;Shanxu, Duan
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.287-295
    • /
    • 2013
  • The use of LCL filters in pulse width modulation voltage source converters is a standard solution for providing proper attenuation of high-order grid-current harmonics. However, these filters can cause the undesired effect of resonance. This paper proposes an active damping strategy with harmonics compensation. It can alleviate the harmonics around the resonance frequency caused by the LCL filters. The proposed strategy is attractive since it is simple, does not depend on grid parameters and does not increase the number of sensors. Simulation and experimental results verify the effectiveness of the proposed active damping strategy.

Balanced Buck-Boost Switching Converter to Reduce Commom-mode Conducted Noise

  • Shoyama, Masahito;Ohba, Masashi;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.139-145
    • /
    • 2002
  • Because conventional switching converters have been usually using unbalanced circuit topologies, parasitice between the drain/collertor of an active switch and frame ground through its heat sink may generate the commom-mode conducted noise. We have proposed a balanced switching converter circuit, whitch is an effective way to reduce the commom-mode converter version of the balanced switching converter was presented and the mechanism of the commom-mode noise reduction was explained using equivalent circuits. This paper extends the concept of the balanced switch converter circuit and presents a buck-boost converter version of the blanced switching converter. The feature of common-mode niose reduction is confirmed by experimental resuits and the mechanisem of the commom-mode niose reduction is explained using equivalent circuits.

High-Efficiency Supercapacitor Charger Using an Improved Two-Switch Forward Converter

  • Choi, Woo-Young;Yang, Min-Kwon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • This paper proposes a high-efficiency supercapacitor charger. Conventional two-switch forward converter can be used for charging supercapacitors. However, the efficiency of conventional converters is low because of their switching losses. This study presents a high-efficiency two-switch forward converter for supercapacitor chargers. The proposed converter improves power efficiency by 4 %, from 89 % to 93 %. The proposed converter has the advantages of reduced switch voltage stresses and minimized circulating current when compared to other converter topologies. The performance of the proposed converter is evaluated by experimental results using a 300 W prototype circuit for a 54-V, 35-F supercapacitor bank.

Experiences with Simulation Software for the Analysis of Inverter Power Sources in Arc Welding Applications

  • Fischer W.;Mecke H.;Czarnecki T.K.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.731-736
    • /
    • 2001
  • Nowadays various simulation tools are widely used for the design and the analysis of power electronic converters. From the engineering point of view it is rather difficult to parameterize power semiconductor device models without the knowledge of basic physical parameters. In recent years some data sheet driven behavioral models or so called 'wizard' tools have been introduced to solve this problem. In this contribution some experiences with some user-friendly power semiconductor models will be discussed. Using special simulation test circuits it is possible to get information on the static and dynamic behavior of the parameterized models before they are applied in more complex schemes. These results can be compared with data sheets or with measurements. The application of these models for power loss analysis of inverter type arc welding power sources will be described.

  • PDF

A Novel Modulation Scheme and a DC-Link Voltage Balancing Control Strategy for T-Type H-Bridge Cascaded Multilevel Converters

  • Wang, Yue;Hu, Yaowei;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2099-2108
    • /
    • 2016
  • The cascaded multilevel converter is widely adopted to medium/high voltage and high power electronic applications due to the small harmonic components of the output voltage and the facilitation of modularity. In this paper, the operation principle of a T-type H-bridge topology is investigated in detail, and a carrier phase shifted pulse width modulation (CPS-PWM) based control method is proposed for this topology. Taking a virtual five-level waveform achieved by a unipolar double frequency CPS-PWM as the output object, PWM signals of the T-type H-bridge can be obtained by reverse derivation according to its switching modes. In addition, a control method for the T-type H-bridge based cascaded multilevel converter is introduced. Then a single-phase T-type H-bridge cascaded multilevel static var generator (SVG) prototype is built, and a repetitive controller based compound current control strategy is designed with the DC-link voltage balancing control scheme analyzed. Finally, simulation and experimental results validate the correctness and feasibility of the proposed modulation method and control strategy for T-type H-bridge based cascaded multilevel converters.

Analysis of Z-Source Inverters in Wireless Power Transfer Systems and Solutions for Accidental Shoot-Through State

  • Wang, Tianfeng;Liu, Xin;Jin, Nan;Ma, Dianguang;Yang, Xijun;Tang, Houjun;Ali, Muhammad;Hashmi, Khurram
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.931-943
    • /
    • 2018
  • Wireless power transfer (WPT) technology has been the focus of a lot of research due to its safety and convenience. The Z-source inverter (ZSI) was introduced into WPT systems to realize improved system performance. The ZSI regulates the dc-rail voltage in WPT systems without front-end converters and makes the inverter bridge immune to shoot-through states. However, when the WPT system is combined with a ZSI, the system parameters must be configured to prevent the ZSI from entering an "accidental shoot-through" (AST) state. This state can increase the THD and decrease system power and efficiency. This paper presents a mathematical analysis for the characteristics of a WPT system and a ZSI while addressing the causes of the AST state. To deal with this issue, the impact of the system parameters on the output are analyzed under two control algorithms and the primary compensation capacitance range is derived in detail. To validate the analysis, both simulations and experiments are carried out and the obtained results are presented.