• Title/Summary/Keyword: Power Efficiency

Search Result 10,765, Processing Time 0.036 seconds

Development of a Welding Machine System Using Brown Gas by Improved Water Electrolyzation

  • Lee Yong-Kyun;Lee Sang-yong;Jeong Byung-Hwan;Mok Hyung-Soo;Choe Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.305-311
    • /
    • 2005
  • Throughout the world, studies on the water energization are currently under way. Of those, Brown gas, which is generated through the electrolyzation of water and is a mixed gas of the constant volume of 2 parts hydrogen to 1 part oxygen, has better characteristics in terms of economy, energy efficiency, and environmental affinity than those of acetylene gas and LPG (Liquefied Petroleum Gas) used for existing welding machines. This paper analyzes the characteristics of Brown gas and presents methods for increasing the generating efficiency of Brown gas by designing a power supply to deliver power to a water-electrolytic cell and designing a cylindrical electrode to improve the efficiency of the electrolyzer needed for water electrolyzation. Based on the above the methods, a welding machine using Brown gas is developed. And the generation efficiency of Brown gas is measured tinder different conditions (duty ratio, frequency and amplitude) of supplied power.

PWM Controller of Power Factor Correction Circuit to Improve Efficiency for Wide Load Range (넓은 부하범위에서 고효율 특성을 갖는 역율개선회로의 PWM 제어기)

  • Son, Min-soo;Kim, Hong-jung;Park, Gwi-chul;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.75-76
    • /
    • 2016
  • This paper proposes a power factor correction circuit with a high efficiency over a wide load range characteristics for a communication power supply. And the characteristic verification is applied to produce a design of prototype. Power factor correction circuit can reduce conduction losses by applying Bridgeless Boost Converter for efficiency. Over a wide load range to maintain the efficient, the control method of a PWM controller is divided by two sections according to the load area. In the low-load region, it was reduced switching losses by applying the critical conduction mode control method. On the other hand, in the heavy-load area, the hysteresis current control method is used to maintain the high efficiency over a wide load range by limiting the peak noise of the inductor.

  • PDF

Development of High Efficiency Solar Power Generation with Two-axis Tracking Control (양축 추적제어에 의한 고효율 태양열 발전시스템의 개발)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1721-1726
    • /
    • 2011
  • Recently, interest in renewable energy is increased due to exhaustion of fossil fuel and environmental pollution all over the world, therefore the solar power generation using solar energy is many researched. The solar power generation is required solar tracking control and high concentration solar thermal collector because generation performance is depended on concentrator efficiency. This paper proposes high efficiency solar power generation with two-axis tracking control using dish-type solar thermal collector that has excellent thermal collector performance and tracking algorithm that can be accurately tracked solar position. This paper proves validity through analysis with accuracy of tracking algorithm and generating efficiency.

A 82.5% Power Efficiency at 1.2 mW Buck Converter with Sleep Control

  • Son, Chung Hwan;Byun, Sangjin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.842-846
    • /
    • 2016
  • This paper presents a DC-DC buck converter which uses a sleep control to improve the power efficiency in a few mW light load condition. The sleep control turns off analog controller building blocks to reduce the static power losses during the off-duty period of pulse width modulation. For verification, a buck converter has been implemented in a $0.18{\mu}m$ CMOS process. The power efficiency has been improved from 76.7% to 82.5% with a 1.2 mW load. The maximum power efficiency is 95% with a 9 mW load.

Split Slant-End Stubs for the Design of Broadband Efficient Power Amplifiers

  • Park, Youngcheol;Kang, Taeggu
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.52-56
    • /
    • 2016
  • This paper suggests a class-F power amplifier with split open-end stubs to provide a broadband high-efficiency operation. These stubs are designed to have wide bandwidth by splitting wide open-end stubs into narrower stubs connected in shunt in an output matching network for class-F operation. In contrast to conventional wideband class-F designs, which theoretically need a large number of matching lines, this method requires fewer transmission lines, resulting in a compact circuit implementation. In addition, the open-end stubs are designed with slant ends to achieve additional wide bandwidth. To verify the suggested design, a 10-W class-F power amplifier operating at 1.7 GHz was implemented using a commercial GaN transistor. The measurement results showed a peak drain efficiency of 82.1% and 750 MHz of bandwidth for an efficiency higher than 63%. Additionally, the maximum output power was 14.45 W at 1.7 GHz.

The optimum conversion efficiency in nile blue arabinose system by photogalvanic cell

  • Lal, Mohan;Gangotri, K.M.
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.143-155
    • /
    • 2015
  • The Nile blue has been used as a photosensitizer with Arabinose as a reductant in photogalvanic cell for optimum conversion efficiency and storage capacity. Reduction cost of the photogalvanic cell for commercial utility. The generated photopotential and photocurrent are 816.0 mV and $330.0{\mu}A$ respectively. The maximum power of the cell is $269.30{\mu}W$ where as the observed power at power point is $91.28{\mu}W$. The observed conversion efficiency is 0.6095% and the fill factor 0.2566 has been experimentally found out at the power point of the photogalvanic cell, whereas the absolute value is 1.00. The photogalvanic cell so developed can work for 120.0 minutes in dark if it is irradiated for 200.0 minutes that is the storage capacity of photogalvanic cell is 60.00%. The effects of different parameters on the electrical output of the photogalvanic cell have been observed. A mechanism has also been proposed for the photogeneration of electrical energy.

Intelligent Energy Saving Power System Controller for Telecom DC Power Plant (통신교환기용 DC 전원시스템을 위한 에너지 절약형 지능제어기)

  • Kim, I.J.;Gu, S.W.;Kim, T.Y.;Choi, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.323-325
    • /
    • 1996
  • The design of Intelligent Energy Saving Power System Controller (IESPSC) for Telecom DC power plants is proposed and presented in this paper. From the past experience. rectifiers for Telecom DC power plants have been operated inefficiently at light loads. IESPSC offers "novel load sharing" approach based on the knowledge of each unit's efficiency of paralleled rectifiers. Neural networks is used for identifying each rectifier's efficiency characteristic curve corresponding to load currents, which is in turn utilized to produce a system efficiency close to the maximum under all operating conditions. In addition, by limiting the number of operating units to the minimum while maintaining high efficiency at the determined loads, a drastic savings in operating cost can be achieved.

  • PDF

Extremely high efficiency wireless power transfer system for EV charger (전기자동차 충전을 위한 고효율 무선전력전송 시스템)

  • Moon, SangCheol;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.155-156
    • /
    • 2015
  • This paper proposes a high efficiency wireless power transfer system with an asymmetric 4-coil resonator. It presents a theoretical analysis, an optimal design method, and experimental results. In the proposed asymmetric 4-coil system, the primary side consists of a source coil and two transmitter coils which are called intermediate coils, and in the secondary side, a load coil serves as a receiver coil. In the primary side, two intermediate coils boost the apparent coupling coefficient at around the operating frequency. Because of this double boosting effect, the system with an asymmetric 4-coil resonator has a higher efficiency than the conventional symmetric 4-coil system. The prototype operates at 90 kHz ofswitching frequency and has 200 mm of the power transmission distance between the primary side and the secondary side. An AC-DC overall system efficiency of 96.56% has been achieved at 3.3 kW of output power.

  • PDF

Input Power Estimation Method of a Three-phase Inverter for High Efficiency Operation of an AC Motor (교류 전동기의 고효율 운전을 위한 3상 인버터의 입력전력 추정 기법)

  • Kim, Do-Hyun;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.445-451
    • /
    • 2019
  • An input power estimation method of a three-phase inverter for the high-efficiency operation of AC motors is proposed. Measuring devices, such as DC link voltage and input current sensors, are required to obtain the input power of the inverter. In the proposed method, the input power of the inverter can be estimated without the input current sensor by using the phase current information of the AC motor and the switching pattern of the inverter. The proposed method is more robust to parameter error than conventional method. The validity of the input power estimation method is verified through experiments conducted on a 1 kW permanent-magnet synchronous motor drive system.

Design Methodology of 500 W Wireless Power Transfer Converter for High Power Transfer Efficiency (500 W 급 무선전력전송 컨버터의 고효율 설계 방법)

  • Kim, Mina;Park, Hwapyeong;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 2016
  • The design methodology of an adequate input voltage and magnetizing inductance to minimize reactive power is suggested to design a wireless power transfer (WPT) converter for high-power transfer efficiency. To increase the magnetizing inductance, the turn number of the WPT coil is increased, thus causing high parasitic resistance in the WPT coil. Moreover, the high coil resistance produces high conduction loss in the transfer and receive coils. Therefore, the analysis of conduction loss is used in the design of the WPT coil and the operating point of the WPT converter. To verify the proposed design methodology, the mathematical analysis of the conduction loss is presented by experimental results.