References
- Y. Park and J. Kim, "A small-sized class-J power amplifier from combined multi-harmonic voltage reflection functions," IEICE Electronics Express, vol. 10, no. 8, pp. 1-7, 2013.
- S. C. Cripps, RF Power Amplif iers for Wireless Communications, 2nd ed.,Boston, MA: Artech House, 2006.
- T. Sharma, R. Darraji, and F. Ghannouchi, "Design methodology of high efficiency continuous mode transfer power amplifiers with one octave bandwidth," in Proceedings of 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICES), Marseille, France, 2014, pp. 674-677.
- N. Tuffy, A. Zhu, and T. J. Brazil, "Novel realisation of a broadband high-efficiency continuous class-F power amplifier," in Proceedings of 2011 European Microwave Integrated Circuits Conference (EuMIC), Manchester, UK, 2011, pp. 120-123.
- K. Chen and D. Peroulis, "A 3.1-GHz class-F power amplifier with 82% power-added-efficiency," IEEE Microwave and Wireless Components Letters, vol. 23, no. 8, pp. 436-438, 2013. https://doi.org/10.1109/LMWC.2013.2271295
- V. Carrubba, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A novel highly efficient broadband continuous class-F RFPA delivering 74% average efficiency for an octave bandwidth," in Proceedings of IEEE MTT-S International Microwave Symposium Digest, Baltimore, MD, 2011, pp. 1-4.
- T. Kang and Y. Park, "Expanding bandwidth of class-F power amplifier with harmonic structures," in Proceedings of 2013 Asia-Pacif ic Microwave Conference (APMC), Seoul, Korea, 2013, pp. 748-750.
- D. M. Pozar, Microwave Engineering, 4th ed.,Hoboken, NJ: Wiley, 2012.
- Y. Park and H. Ku, "Geo-electrical design of wideband, efficient class-F power amplifiers," IEICE Transactions on Electronics, vol. 98, no. 10, pp. 987-990, 2015.
Cited by
- Multiport Signal-Flow Analysis to Improve Signal Quality of Time-Interleaved Digital-to-Analog Converters vol.E101.C, pp.8, 2018, https://doi.org/10.1587/transele.E101.C.685