• Title/Summary/Keyword: Power Distribution Systems

Search Result 1,306, Processing Time 0.023 seconds

An Improved Service Restoration Algorithm under Consideration of Abnormal Conditions in Distribution Automation Systems

  • Cho, Namhun;Kim, Insung;Lee, Sungwoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • The most important function in distribution automation system (DAS) is the service restoration. KEPCO's current service restoration provides a very effective restoration service. However, it has been developed without the consideration of unexpected abnormal conditions that may occur while processing the sequence of switching operations. The objective of this paper is to provide practical service restoration schemes under consideration of abnormal conditions. The proposed service restoration schemes have been integrated to a branch office (B/O) in KEPCO. The proposed method strongly supports the conventional service restoration and adds to its value.

An Economic Assessment of Large-scale Battery Energy Storage Systems in the Energy-Shift Application to Korea Power System (장주기 대용량 전력저장장치의 부하이전에 대한 실계통 적용 경제성 평가 연구)

  • Park, Jong-Bae;Park, Yong-Gi;Roh, Jae-Hyung;Chang, Byung-Hoon;Toon, Yong-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.384-392
    • /
    • 2015
  • This paper presents an economic assessment of large-scale Li-ion battery energy storage systems applied to Korean power system. There are many applications of the battery energy storage systems (BESSs) and they can provide various benefits to power systems. We consider BESSs to the energy time-shift application to Korean power system and evaluate the benefits from the application of BESS in the social perspective. The mixed integer programming (MIP) algorithm is used to resolve the optimal operation schedule of the BESS. The social benefits can include the savings of the fuel cost from generating units, deferral effects of the generation capacity, delay of transmission and distribution infra construction, and incremental CO2 emission cost impacts, etc. The economic evaluation of the BESS is separately applied into Korean power systems of the Main-land and Jeju island to reflect the differences of the load and generation patterns.

A Systems Engineering Approach to Multi-Physics Load Follow Simulation of the Korean APR1400 Nuclear Power Plant

  • Mahmoud, Abd El Rahman;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.1-15
    • /
    • 2020
  • Nuclear power plants in South Korea are operated to cover the baseload demand. Hence they are operated at 100% rated power and do not deploy power tracking control except for startup, shutdown, or during transients. However, as the contribution of renewable energy in the energy mix increases, load follow operation may be needed to cover the imbalance between consumption and production due to the intermittent nature of electricity produced from the conversion of wind or solar energy. Load follow operation may be quite challenging since the operators need to control the axial power distribution and core reactivity while simultaneously conducting the power maneuvering. In this paper, a systems engineering approach for multi-physics load follow simulation of APR1400 is performed. RELAP5/SCDAPSIM/MOD3.4/3DKIN multi-physics package is selected to simulate the Korean Advanced Power Reactor, APR1400, under load follow operation to reflect the impact of feedback signals on the system safety parameters. Furthermore, the systems engineering approach is adopted to identify the requirements, functions, and physical architecture to provide a set of verification and validation activities that guide this project development by linking each requirement to a validation or verification test with predefined success criteria.

Dynamic Analysis of Variable Speed Wind Power Systems with Doubly-Fed Induction Generators (이중여자 유도발전기에 의한 가변속 풍력 발전시스템의 동특성 해석)

  • Choi, Jang-Young;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.325-336
    • /
    • 2006
  • This paper deals with the dynamic analysis of variable speed wind power systems with doubly-fed induction generators (DFIG). First, the mathematical modeling of wind farm which consists of turbine rotor, DFIG, rotor side and grid side converter and control systems is presented. In particular, the equation for dynamic modeling of the DFIG and the AC/DC/AC converter is expressed as dq reference frame. And then, on the basis of mathematical modeling for each component of wind farm, dynamic simulation algorithms for speed and pitch angle control of wind turbine and generated active and reactive power control of the DFIG and the AC/DC/AC converter are established. Finally, Using the MATLAB/SIMULINK, this paper presents dynamic simulation model for 6MW wind power generation systems with the DFIG considering distribution systems and performs the dynamic analysis of wind power systems in steady state. Moreover, this paper also presents the dynamic performance for the case when the voltage sag in grid source and phase fault in bus are occurred.

A New Low-Cost Active Power Filter to Suppress Neutral Current Harmonics in Three-Phase Four-Wire System (3상 4선식 배전계통에서 중성선 전류 제거를 위한 새로운 저가형 능동전력필터)

  • 장민수;최세완;김기영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.359-365
    • /
    • 2002
  • Three-phase four-wire electrical distribution systems have been widely employed in manufacturing plants, commercial and residential buildings. Due to the nonlinear loads, the neutral conductor carries excessive harmonic currents resulting in wiring failure of the neutral conductor, overloading of the distribution transformer and a voltage drop between the neutral and the ground. This paper proposes a reduced rating active power filter to suppress neutral current harmonics in three-phase four-wire electrical distribution systems. The proposed system is simple in control and the VA rating of the inverter could be significantly reduced since only the fundamental current due to unbalanced loading flows through the inverter switch. The experimental results on a prototype validate the proposed control approach.

Investigation of Spatial Distribution of Plasma Density between the Electrode and Lateral Wall of Narrow-gap CCP Source (좁은 간격 CCP 전원의 전극과 측면 벽 사이 플라즈마 분포)

  • Choi, Myung-Sun;Jang, Yunchang;Lee, Seok-Hwan;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.1-5
    • /
    • 2014
  • The plasma density distribution in between the electrode and lateral wall of a narrow gap CCP was investigated. The plasma density distribution was obtained using single Langmuir probe, having two peaks of density distribution at the center of electrode and at the peripheral area of electrodes. The plasma density distribution was compared with the RF fluctuation of plasma potential taken from capacitive probe. Ionization reactions obtained from numerical analysis using CFD-$ACE^+$ fluid model based code. The peaks in two region for plasma density and voltage fluctuation have similar spatial distribution according to input power. It was found that plasma density distribution between the electrode and the lateral wall is closely related with the local ionization.

The Investment Scheme of the Maintenance Planning with Limited Investment Budget in the Distribution Systems for Minimizing the Interruption Cost (제한된 투자 예산으로 정전비용 최소화를 위한 배전계통 유지보수 계획의 투자 방안)

  • Hwang, Won-Il;Kim, Kyu-Ho;Kim, Hong-Rae;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.1-7
    • /
    • 2010
  • The reliability of a power system has close relationship with the maintenance of the distribution systems. This paper presents the method of the maintenance planning of the distribution systems by minimizing the interruption cost. The interruption cost for the equipment failures is formulated using time varying failure rate and minimized by optimization of the object function. The proposed method provides the priority list for the investment of the maintenance subject to the limited investment budget by the economic analysis. In order to test the proposed method, the modified distribution system of a rural area is introduced for the testing system. Test results show that the proposed method is good enough by evaluating the improvement of the reliability of the power system.

Implementation of a Inference based Intelligent Distribution Panel System for Prevention and fast Detection of fire caused by Electricity (전기화재 예방과 신속 감지를 위한 추론기반 지능형 수배전반 시스템 구현 연구)

  • Park, Chan-Eom;Kim, Kyung-Dong;Lee, Seung-Chul;Yang, Won-Young
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.82-85
    • /
    • 2006
  • With the fast growing number of skyscrapers and large ultrahigh apartment complexes, the concerns on fire caused by electricity also grow. Among about 30,000 fires recorded annually, roughly one third of them are hewn to be caused by electricity. If one of such high and densely populated buildings or apartments catches a fire, the consequence can potentially be quite catastrophic. However, with the rapid development of the techniques in the fields of communications and computers, electric power distribution systems for such buildings and apartments have been largely digitalized in recent years. More detailed informations on the operating status are now available, which enables more sophisticated monitoring and early detection of potential fire caused by electricity. In this paper, we present an inference technique that can be used as one of the basic techniques in building intelligent distribution panel systems that can effectively monitor, prevent and detect the occurrence of fire caused by electricity. The technique can accommodate production rules in linguistic expressions on high abstraction levels. Fire finding strategies can be easily modified to provide more effective countermeasures. Simulation results show that inference capabilities and thus the capability of fire monitoring in power distribution panel systems can be significantly enhanced with our approach.

  • PDF

Phase Angle Control in Resonant Inverters with Pulse Phase Modulation

  • Ye, Zhongming;Jain, Praveen;Sen, Paresh
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.332-344
    • /
    • 2008
  • High frequency AC (HFAC) power distribution systems delivering power through a high frequency AC link with sinusoidal voltage have the advantages of simple structure and high efficiency. In a multiple module system, where multiple resonant inverters are paralleled to the high frequency AC bus through connection inductors, it is necessary for the output voltage phase angles of the inverters be controlled so that the circulating current among the inverters be minimized. However, the phase angle of the resonant inverters output voltage can not be controlled with conventional phase shift modulation or pulse width modulation. The phase angle is a function of both the phase of the gating signals and the impedance of the resonant tank. In this paper, we proposed a pulse phase modulation (PPM) concept for the resonant inverters, so that the phase angle of the output voltage can be regulated. The PPM can be used to minimize the circulating current between the resonant inverters. The mechanisms of the phase angle control and the PPM were explained. The small signal model of a PPM controlled half-bridge resonant inverter was analyzed. The concept was verified in a half bridge resonant inverter with a series-parallel resonant tank. An HFAC power distribution system with two resonant inverters connected in parallel to a 500kHz, 28V AC bus was presented to demonstrate the applicability of the concept in a high frequency power distribution system.

A Study on the State Estimation Algorithm for DC System Analysis (직류시스템 해석을 위한 상태추정 알고리즘에 관한 연구)

  • Kwon, Hyuk-Il;Kim, Hong-Joo;Kim, Juyong;Cho, Yoon-Sung
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.754-758
    • /
    • 2018
  • Analysis methods in the power system are static analysis, dynamic analysis and online analysis, offline analysis. The static analysis is used for the existing power system analysis method and the static analysis is mainly used for PSS / E. However, in the real system where the value changes in real time which we are using, dynamic analysis is required which can be analyzed in real time for accurate analysis. Therefore, attention is focused on EMS (Energy Management System) and importance is increasing. Among the various EMS systems, we will cover state estimation, which is a static on-line analysis that can receive and interpret data from the acquisition point in real time. DC systems are spreading in various fields such as DC load, DC distribution, renewable energy. As such, much attention and attention are focused on the DC system. In this paper, we have studied the feasibility through the case study and the interpretation of the state estimation that can be applied to the DC system.