• 제목/요약/키워드: Power Distribution Systems

검색결과 1,303건 처리시간 0.028초

Power Flow Control of a Multi-bus/Three-feeder Distribution System Using Generalized Unified Power Quality Conditioner

  • Mohammed, B.S.;Ibrahim, R.;Perumal, N.;Rao, K.S. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.8-17
    • /
    • 2015
  • This paper analyses the power flow of a three-feeder/multi-bus distribution system by a custom Generalized Power Quality Conditioner (GUPQC). The GUPQC has been realized by three voltage source converters (VSCs) coupled back-to-back through a common DC-link capacitor on the DC-side. One feeder was controlled by the shunt compensator, whereas each of the other two feeders was controlled by the proposed novel series compensator. The GUPQC has the capability to simultaneously compensate voltage and current quality problems of a multi-bus/three-feeder distribution system. Besides that, the power can be transferred from one feeder to other feeders to compensate for poor power quality problems. Extensive simulation studies were carried out by using MATLAB/SIMULINK software to establish the ability of the GUPQC to improve power quality of the distribution systems under distorted supply voltage conditions.

Characteristics of Lightning Overvoltages Coming in Low-Voltage Power Distribution Systems

  • Lee, Bok-Hee;Lee, Dong-Moon;Lee, Su-Bong;Jeong, Dong-Cheol;Lee, Jae-Bok;Myung, Sung-Ho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권3호
    • /
    • pp.91-98
    • /
    • 2003
  • The importance of improving the quality of electric power is being strongly raised, owing to an increasing use of sensitive and small-sized electronic devices and systems. The transient over-voltages on low-voltage power distribution systems are induced by direct or indirect lightning return strokes. These can cause damage and/or malfunction of the utility systems for home automation, office automation, factory automation, medical automation, etc. The behaviors of lightning overvoltages transferred through the transformer to the low-voltage distribution systems using a Marx generator were experimentally investigated. Furthermore, the coupling mechanisms of lightning overvoltages transferred to the low-voltage systems were clearly illustrated through a theoretical simulation using a Pspice program. The overvoltages in low-voltage ac power systems are rarely limited by the application of the surge arrester to the primary side of the distribution transformer. A superior surge protection scheme is to install surge protection devices at the service entrance switchboard and/or at the load devices in TN power systems.

New Fault Location Algorithms by Direct Analysis of Three-Phase Circuit Using Matrix Inverse Lemma for Unbalanced Distribution Power Systems

  • Park, Myeon-Song;Lee, Seung-Jae
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권2호
    • /
    • pp.79-84
    • /
    • 2003
  • Unbalanced systems, such as distribution systems, have difficulties in fault locations due to single-phase laterals and loads. This paper proposes new fault locations developed by the direct three-phase circuit analysis algorithms using matrix inverse lemma for the line-to-ground fault case and the line-to-line fault case in unbalanced systems. The fault location for balanced systems has been studied using the current distribution factor, by a conventional symmetrical transformation, but that for unbalanced systems has not been investigated due to their high complexity. The proposed algorithms overcome the limit of the conventional algorithm using the conventional symmetrical transformation, which requires the balanced system and are applicable to any power system but are particularly useful for unbalanced distribution systems. Their effectiveness has been proven through many EMTP simulations.

분산전원이 도입된 배전계통의 전압해석 방법에 관한 연구 (A Study for the Voltage Analysis Method of Distribution Systems with Distributed Generation)

  • 김태응;김재언
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권2호
    • /
    • pp.69-78
    • /
    • 2003
  • This paper presents a voltage analysis method of distribution systems interconnected with DG(Distributed Generation). Nowadays, small scale DG becomes to be introduced into power distribution systems. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers by using only ULTC(Under Load Tap Changer). This paper presents a voltage analysis method of distribution systems with DC for proper voltage regulation of power distribution systems with ULTC. In order to develop the voltage analysis method, distribution system modeling method and advanced loadflow method are proposed. Proposed method has been applied to a 22.9 kV practical power distribution systems.

전기자동차 보급 전망에 따른 배전계통에서의 영향 평가 (Influence Evaluation of Electric Vehicle Load on Distribution Systems by the penetration rate of Electric Vehicle)

  • 김철우;한승호;송택호;정문규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.256-257
    • /
    • 2011
  • The development for Eco-friendly cars has been expanded as the concern about environmental pollution and a rise in gas prices. The Electric Vehicle(EV) and Plug in Hybrid Electric Vehicle(PHEV) are generally connected on distribution power systems to charge the traction batteries. The growing number of EV/PHEVs could have a effect on distribution power systems and result in overload of power utilities and power quality problems. In order to reduce the adverse effect on distribution power systems, the influence of electric vehicle loads should be evaluated. In this paper, the influence of electric vehicle loads is evaluated by using OpenDSS(Open Source Distribution System Simulator) according to the penetration rate of electric vehicle.

  • PDF

배전계통에 연계된 열병합발전 시스템의 개선된 보호협조 방안에 관한 연구 (Advanced Protective Coordination Schemes of Utility Interconnected Cogeneration Systems)

  • 최준호;정성교;추동욱;김낙경;손학식;김재철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권6호
    • /
    • pp.280-288
    • /
    • 2000
  • Recently, there has been growing interest in utilizing cogeneration(COGN) systems with a high-energy efficiency due to the increasing energy consumption and the lacking of energy resource. But an insertion of COGN system to existing power distribution system can cause several problems such as voltage variations, harmonics, protective coordination, increasing fault current etc, because of reverse power of COGN, especially in protective coordination. A study on a proper coordination with existing one is being required. The existing power distribution system is operated with radial type by one source and protection system is composed based on unidirectional power source. But an Insertion of COGN system to power distribution system change existing unidirectional power source system to bidirectional power source. Therefore, investigation to cover whole field of power distribution system must be accomplished such as changing of protection devices rating by increasing fault current, reevaluation of protective coordination. In this paper, simulation using PSCAD/EMTDC was accomplished to analyze effect of COGIN on distribution fault current. Also, the existing protection system of 22.9[kV] power distribution system and customers protection system to protect of COGIN was analyzed and the study on protective coordination between of two protection system accomplished.

  • PDF

Optimal Capacity and Allocation of Distributed Generation by Minimum Operation Cost in Distribution Systems

  • Shim Hun;Park Jung-Hoon;Bae In-Su;Kim Jin-O
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권1호
    • /
    • pp.9-15
    • /
    • 2005
  • In the operation of distribution systems, DGs (Distributed Generations) are installed as an alternative to extension and the establishment of substations, transmission and distribution lines according to the increasing power demand. In the operation planning of DGs, determining optimal capacity and allocation achieves economical profitability and improves the reliability of power distribution systems. This paper proposes a determining method for the optimal number, size and allocation of DGs in order to minimize the operation costs of distribution systems. Capacity and allocation of DGs for economical operation planning duration are determined to minimize total cost composed with power buying cost, operation cost of DGs, loss cost and outage cost using the GA (Genetic Algorithm).

태양광전원 계통연계시험장치에 의한 수용가 전력품질특성에 관한 연구 (Analysis of Customer Power Quality Characteristics Using PV Test Devices)

  • 김병목;김병기;박재범;노대석
    • 한국융합학회논문지
    • /
    • 제2권4호
    • /
    • pp.21-27
    • /
    • 2011
  • 현재 신 재생에너지 보급사업에 의해 설치되고 있는 태양광전원설비가 전력계통과 연계 운영될 경우 배전계통의 전력품질 요소에 어떠한 영향을 미치고 있는지를 모의시험을 통해 정확히 측정 분석하여 향후 분산형전원의 확대 보급에 따른 가이드라인의 구축과 기술적인 연계지침이 필요한 상황이다. 따라서 본 논문에서는 태양광이 연계되는 위치에 따른 선로임피던스($R{\pm}jX$)에 의하여 생기는 전압상승 및 하강에 의한 전력품질[Sag/Swell] 저하 현상에 대하여 태양광전원용 LabVIEW 프로그램을 통해 전력품질 시험을 수행하여 그 특성을 분석한다.

Coordinated Voltage Control Scheme for Multi-Terminal Low-Voltage DC Distribution System

  • Trinh, Phi Hai;Chung, Il-Yop;Kim, Taehoon;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1459-1473
    • /
    • 2018
  • This paper focuses on voltage control schemes for multi-terminal low-voltage direct current (LVDC) distribution systems. In a multi-terminal LVDC distribution system, there can be multiple AC/DC converters that connect the LVDC distribution system to the AC grids. This configuration can provide enhanced reliability, grid-supporting functionality, and higher efficiency. The main applications of multi-terminal LVDC distribution systems include flexible power exchange between multiple power grids and integration of distributed energy resources (DERs) using DC voltages such as photovoltaics (PVs) and battery energy storage systems (BESSs). In multi-terminal LVDC distribution systems, voltage regulation is one of the most important issues for maintaining the electric power balance between demand and supply and providing high power quality to end customers. This paper focuses on a voltage control method for multi-terminal LVDC distribution system that can efficiently coordinate multiple control units, such as AC/DC converters, PVs and BESSs. In this paper, a control hierarchy is defined for undervoltage (UV) and overvoltage (OV) problems in LVDC distribution systems based on the control priority between the control units. This paper also proposes methods to determine accurate control commands for AC/DC converters and DERs. By using the proposed method, we can effectively maintain the line voltages in multi-terminal LVDC distribution systems in the normal range. The performance of the proposed voltage control method is evaluated by case studies.

전력용 LAN 지원 다기능 광 전송장치 개발 (Multi-Service Optical Transmission Equipment with LAN Interface for Electrical Power System)

  • 김재성;민남기;이성재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1901-1902
    • /
    • 2006
  • In recent years, it has been a worldwide trend that many power utilities gave their attention to develop and operate their power plants, substation and distribution systems. Following this trend, KEPCO(Korea Electric Power Corporation) has developed many electric automation systems with various communication networks. It has been natural that the automation systems are just focused on to remote devices when they come to be designed. But, we have to shift the focus to the automation system itself. We have developed the Multi-service Optical Transmission System (M-OTS) for electrical power systems. It can be adopt to not only distribution power field but also the transmission power field. The result strongly shows that the system is potentially beneficial in reliability, speed, and expandability. This paper presents some of initial design efforts and results toward a KEPCO's communication system in distribution areas.

  • PDF