• Title/Summary/Keyword: Power Distribution Systems

Search Result 1,308, Processing Time 0.036 seconds

A Cooperative Multiagent System for Enhancing Smart Grid Performance

  • Mohammad A Obeidat
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.164-172
    • /
    • 2023
  • Sharing power data between electrical power grids is crucial in energy management. The multi-agent approach has been applied in various applications to improve the development of complex systems by making them both independent and collaborative. The smart grid is one of the most intricate systems that requires a higher level of independence, reliability, protection, and adaptability to user requests. In this paper, a multi-agent system is utilized to share knowledge and tackle challenges in smart grids. The shared information is used to make decisions that aid in power distribution management within the grid and with other networks. The proposed multi-agent mechanism improves the reliability of the power system by providing the necessary information at critical times. The results indicate that the multi-agent system operates efficiently and promptly, making it a highly promising candidate for smart grid management.

A Study on the Reverse-Power-Flow Phenomenon due to Transformer Wiring Types in Distribution System (배전계통에서 변압기 결선에 의한 역 조류현상에 관한 연구)

  • Shin, Dong-Yeol;Ha, Bok-Nam;Jung, Won-Wook;Cha, Han-Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.111-119
    • /
    • 2008
  • As the penetration of distributed generation systems is recently high, there have been metering errors, trips of protective devices in KEPCO distribution systems including an occurrence of false fault-indicator in distribution automation system. The cause of malfunctions was the reverse-power-flow phenomenon due to transformer wiring types. By the effect of the reverse-power-flow, each of phase's fundamental currents was added by about 3 times on the neutral line. A new method based on the analysis of the reverse-power-flow is proposed in this paper. Fault currents on each section were analyzed by the proposed method, and the effect of types of transformer wiring was examined experimentally. In order to reduce the malfunctions due to the reverse-power-flow, controlling the zero-sequence impedance of transformer was designed and verified by using PSCAD/EMTDC software.

Leakage Currents Flowing through Lightning Surge Arresters under Various Fault Conditions in Receiving and Distribution Power Systems (수배전계통의 여러 가지 고장조건에서 피뢰기에 흐르는 누설전류)

  • Lee, Bok-Hee;Kil, Hyeong-Joon;Kang, Sung-Man;Choi, Hwee-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.132-139
    • /
    • 2004
  • Unsymmetrical faults are classified into single line-to-ground faults, line-to-line faults, or double line-to-ground faults in receiving and distribution power systems. Many of overhead distribution-line faults are single line-to-ground faults, and lightning surge arresters are stressed by system frequency overvoltages due to unsymmetrical faults. In this work, the unsymmetrical faults in receiving and distribution systems were experimentally simulated, and the characteristics of total leakage current flowing through lightning surge arresters due to various unsymmetrical faults were investigated. As a result, a little variations of the leakage current flowing through Zinc oxide (ZnO) surge arresters in the range of $\pm$10[%] voltage regulations were observed. It could be concluded that the unsymmetrical faults have no effect on the long-term life performance of ZnO surge arresters in effective grounding systems. On the other hand, the magnitude of the leakage current flowing through ZnO surge arrester elements under single line-to-ground faults was more than 140 times as compared with that under normal operating voltages in ineffective grounding systems. But abnormal voltages caused by line-to-line faults and double line-to-ground faults have a little effect on total leakage current of ZnO surge arrester elements.

A study on the Normal Steady State Operation Characteristics of PV System Based on the Test Device (태양광전원용 시험장치를 이용한 정상상태 운용특성에 관한 연구)

  • Hasan, Md.Mubdiul;Munkbaht, Munkbaht;Kim, Byung-Ki;Rho, Dae-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.512-516
    • /
    • 2012
  • Recently the Korean government's green energy growth policy has been taken at the national level due to the sufficient supply of renewable energy. Some specific technique should be taken in consideration for the operation of the grid voltage and power quality management. In this case, there may have some chance of operational problems. Typical problems arise when grid-connected solar power produced by Pacific sunshine. The power flow in the reverse direction can create overvoltage on the distribution line and gives value of malfunction on the system. Line voltage and overvoltage adjustment practice can stop these symptoms occurred. Under these circumstances, this paper presents an interconnection test devices for photovoltaic(PV) systems composed of distribution system simulator, PV system simulator and control and monitoring systems using the LabVIEW S/W, and simulates the customer voltage characteristics considering the 3 parameters on the introduction capacity for PV systems, system configuration and Power factor. This paper also proposes a new calculation algorithm for voltage profile to make comparison between calculation values and test device values. The results show that the simulation results for the normal operation characteristics of PV systems which are very practical and effective.

  • PDF

A Study of High Performance and Reliable CORBA Platform for Open Communication Systems (개방형통신시스템을 위한 고성능, 고신뢰성 CORBA 플랫폼에 관한 연구)

  • 장종현;이동길;한치문
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.2
    • /
    • pp.19-29
    • /
    • 2004
  • In this paper, the beam steering dipole phased array antenna systems for IMT-2000 base station have been designed. The designed beam steering dipole phased array antenna systems are constituted by the antenna part and the beam steering control system part. The antenna part is designed by the proposed flat dipole for the broadband characteristics, and the 8${\times}$8 dipole way antenna is constructed by the Proposed flat dipole for the directional radiation pattern. Besides the vertical Power divider is designed for the vertical power distribution. The beam steering control system part is designed the horizontal power divider for the horizontal power distribution, the 4-bit phase shifters and the driving circuit of phase shifters for the horizontal beam tilting. In order to evaluate a performance of the designed antenna systems, they were fabricated and the radiation characteristics were measured. From the measured results, we found that the horizontal beams were tilted by the each control signals, and the measured radiation characteristics showed good agreement with the design goals.

The Installable Maximum DG Capacity Considering LDC Parameters of ULTC and SVR in Distribution Systems (ULTC 와 SVR 이 설치된 배전계통에서 LDC Parameters 을 고려한 최대 DG 용량 산정)

  • Kim, Mi-Young;Hara, Ryoichi;Kita, Hiroyuki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.27-28
    • /
    • 2008
  • For stable and sustainable energy supply, distributed generator (DG) has become an essential and indispensable element from environmental and energy security perspectives. However, installation of DG in distribution systems may cause negative affects on feeders because power outputs of DG could be changed irregularly. One of major negative affects is variation in voltage profile. In general, voltage regulation devices such as under load tap changer (ULTC) at distribution substation and step voltage regulator (SVR) along feeder in distribution system are used to maintain customers' receiving voltage within a predetermined range. These regulators are controlled by line drop compensation (LDC) method which calls for two parameters; the equivalent impedance and the load center voltage. Therefore, consideration of DG outputs in the LDC parameter design procedure may give large impact on the installable DG capacity. This paper proposes a method that estimates maximum Installable DG capacity considering LDC parameters of ULTC and SVR. The proposed algorithm is tested with model network.

  • PDF

A Study on Air-distribution method for the Thermal Environmental Control in the Data Center (데이터센터의 합리적인 환경제어를 위한 공기분배 시스템에 대한 연구)

  • Cho, Jin-Kyun;Cha, Ji-Hyoung;Hong, Min-Ho;Yeon, Chang-Kun
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.487-492
    • /
    • 2008
  • The cooling of data centers has emerged as a significant challenge as the density of IT server increases. Server installations, along with the shrinking physical size of servers and storage systems, has resulted in high power density and high heat density. The introduction of high density enclosures into a data center creates the potential for "hot spots" within the room that the cooling system may not be able to address, since traditional designs assume relatively uniform cooling patterns within a data center. The cooling system for data center consists of a CRAC or CRAH unit and the associated air distribution system. It is the configuration of the distribution system that primarily distinguishes the different types of data center cooling systems, this is the main subject of this paper.

  • PDF

A study on the Optimal Operation of Step Voltage Regulator(SVR) in the Distribution Feeders(3) (고압배전선로의 선로전압조정장치(SVR)의 최적운용에 관한 연구(3))

  • Lee, Eun-Mi;Rho, Dae-Seok;Park, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.97-99
    • /
    • 2003
  • This paper deals with optimal voltage regulation methods of line voltage regulator(SVR : Step Voltage Regulator) in power distribution systems. In order to deliver suitable voltages to as many customers as possible, the optimal sending voltage of SVR should be decided by the effective operation of voltage regulators at the distribution feeders and substations. In this paper, a new voltage regulation method based on the existing method is presented and an optimal coordination method of multiple voltage regulators is extended. The results from a case study show that the proposed methods can be a practical tool for the voltage regulation in distribution systems.

  • PDF

A Study on the Results of the diagnosis of Insulation Deterioration in Live-Line Distribution Power Cables at the Field (배전용 CV케이블의 현장 열화진단 결과의 고찰)

  • Yoo, Soung-Jong;Jeon, Seung-Ik;Jung, Suk-Youn
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1831-1834
    • /
    • 1996
  • Diagnosis of cable insulation degradation has important meaning from a viewpoint of reliability enhancement of CV cable systems. So, we diagnosed 3.3kV & 6.6kV CV distribution cable on live-line which is judged to a most poor installation condition because they have been used in water condition after installation at the Yeochon chemical complex. The paper describes the analysis of the measured data, the problems at diagnosis, and the items which are considered at the development of diagnosis technology and equipment hearafter.

  • PDF