• Title/Summary/Keyword: Power Distribution Impedance

Search Result 190, Processing Time 0.032 seconds

High Impedance Fault Detection on 22.9kV Multigrounded Distribution System (22.9kV 이중접지 배전선로 고저항 지락 검출)

  • Park, Young-Moon;Lee, Ki-Won;Lim, Ju-Il;Yoon, Man-Chul;Yoo, Myeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.463-468
    • /
    • 1987
  • In this paper, a high impedance fault detection on 22.9kV multigrounded distribution system that has been very difficult by any existing conventional protective relaying systems is studied. Because the fault current is very low, it cannot be distinguished from neutral current caused by load unvalanced on multigrounded distribution system. We developed the new and best algorithms of high impedance ground fault detection. This algorithms are 'the even order power method, even order ratio method', 'and even order ratio varience method'. Using this algorithms, a detection device for high impedance faults is constructed and tested in the laboratory. And continually, it is installed and has been tested in KEPCO substations.

  • PDF

Analysis on Voltage Sag According to Impedance and Application Location of SFCL with Recloser-Recloser Coordination (재폐로차단기간 보호협조 동작시 초전도한류기 적용위치 및 임피던스에 따른 순간저전압 분석)

  • Kim, Yi-Gwan;Noh, Shin-Eui;Kim, Jin-Seok;Kim, Jae-Chul;Lim, Sung-Hun;Kim, Hye-Rim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.230-236
    • /
    • 2014
  • Superconducting fault current limiter (SFCL) has been expected as one of more effective solutions for decreasing fault current instantaneously and various types of SFCLs have been developed to apply into real power system. Recently, the application of the SFCL in a power distribution system has been reported to be contributed to the suppression of the voltage sag as well as the limitation of the fault current. However, the suppressing effect of voltage sag by the SFCL depends on component of its impedance and its application location in a power distribution system considering the recloser-recloser coordination. This paper analyzed the voltage sag caused by recloser-recloser coordination in a power distribution system and the suppression of the voltage sag due to the application location of the SFCL in a power distribution system was discussed through the PSCAD/EMTDC simulation.

Analysis and Optimization of Bidirectional Exponential SC Power Conversion Circuits

  • Ye, Yuanmao;Peng, Wei;Jiang, Bijia;Zhang, Xianyong
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.672-680
    • /
    • 2018
  • A bidirectional exponential-gain switched-capacitor (SC) DC-DC converter is developed in this paper. When compared with existing exponential SC converters, the number of switches is significantly reduced and its structure is simplified. The voltage transfer features, voltage ripple across capacitors, efficiency and output impedance of the proposed converter are analyzed in detail. Optimization of the output impedance is also discussed and the best type of capacitance distribution is determined. A common function of the voltage gain to the output impedance is found among the proposed converter and other popular SC voltage multipliers. Experimental evaluation is carried out with a 6-24V bidirectional prototype converter.

Detection of High Impedance Fault based on Time Delay Neural Network (시간지연 신경회로망을 이용한 고장지락사고 검출)

  • Choi, Jin-Won;Lee, Chong-Ho;Kim, Choon-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.405-407
    • /
    • 1994
  • In order to provide reliable power service and to prevent a potentail hazard and damage, it is important to detect high impedance fault in power distribution line. This paper presents a neural network based approach for the detection of high impedance faults. A time delay neural network has been selected and trained for the fault currents obtained from field experiments. Detection experiments have been performed with the data from four different high impedance surfaces. Experimental results indicated the feasibility of using TDNN for the detection of high impedance faults.

  • PDF

A New Analysis for Load Unbalance Factor (부하 불평형율에 대한 새로운 해석)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.67-72
    • /
    • 2006
  • Most of the load distributions in low voltage power feeder distribution systems are designed with approximately balanced and connected at the three phase four wire systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating load unbalance. Load unbalance factor is mainly affected by the impedance of load system. Unbalanced current will draw a highly unbalanced voltage. This paper presents a new calculation method for unbalance factor under the load variation at the three phase four wire system. Load unbalance factor is measured by the power quality measurement apparatus and compared with the current unbalance factor. Two methods are indicated similar results.

Influence of the Interconnected Wind farm on Protection for Distribution Networks (풍력발전단지의 계통연계 운전이 배전선 보호계전에 미치는 영향)

  • 장성일;김광호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.151-157
    • /
    • 2003
  • Wind farm interconnected with grid can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the distribution power line with wind fm, the fault current level measured in a relaying point might be lower than that of distribution network without wind turbine generator due to the contribution of wind farm. Consequently, it may be difficult to detect the fault happened in the distribution network connected with wind generator This paper describes the effect of the interconnected wind turbine generators on protective relaying of distribution power lines and detection of the fault occurred in a power line network. Simulation results shows that the current level of fault happened in the power line with wind farm depends on the fault impedance, the fault location. the output of wind farm. and the load condition of distribution network.

Eddy Loss Analysis and Parameter Optimization of the WPT System in Seawater

  • Zhang, Ke-Han;Zhu, Zheng-Biao;Du, Luo-Na;Song, Bao-Wei
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.778-788
    • /
    • 2018
  • Magnetic resonance wireless power transfer (WPT) in the marine environment can be utilized in many applications. However, energy loss in seawater through eddy loss (EL) is another consideration other than WPT in air. Therefore, the effect of system parameters on electric field intensity (EFI) needs to be measured and ELs calculated to optimize such a system. In this paper, the usually complicated analytical expression of EFI is simplified to the product of frequency, current, coil turns, and a coefficient to analyze the eddy current loss (ECL). Moreover, as the calculation of ECL through volume integral is time-consuming, the equivalent eddy loss impedance (EELI) is proposed to help designers determine the optimum parameters quickly. Then, a power distribution model in seawater is conceived based on the introduction of EELI. An optimization flow chart is also proposed according to this power distribution model, from which a prototype system is developed which can deliver 100 W at 90% efficiency with a gap of 30 mm and a frequency of 107.1 kHz.

Unbalanced Power Sharing for Islanded Droop-Controlled Microgrids

  • Jia, Yaoqin;Li, Daoyang;Chen, Zhen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.234-243
    • /
    • 2019
  • Studying the control strategy of a microgrid under the load unbalanced state helps to improve the stability of the system. The magnitude of the power fluctuation, which occurs between the power supply and the load, is generated in a microgrid under the load unbalanced state is called negative sequence reactive power $Q^-$. Traditional power distribution methods such as P-f, Q-E droop control can only distribute power with positive sequence current information. However, they have no effect on $Q^-$ with negative sequence current information. In this paper, a stationary-frame control method for power sharing and voltage unbalance compensation in islanded microgrids is proposed. This method is based on the proper output impedance control of distributed generation unit (DG unit) interface converters. The control system of a DG unit mainly consists of an active-power-frequency and reactive-power-voltage droop controller, an output impedance controller, and voltage and current controllers. The proposed method allows for the sharing of imbalance current among the DG unit and it can compensate voltage unbalance at the same time. The design approach of the control system is discussed in detail. Simulation and experimental results are presented. These results demonstrate that the proposed method is effective in the compensation of voltage unbalance and the power distribution.

The power distribution of the open delta connected transformers due to unbalance of the impedances (변압기(變壓器) V결선(結線)에서의 Impedance 불평형(不平衡)으로 의한 전력분배(電力分配))

  • O, Cheol-Su
    • Proceedings of the KIEE Conference
    • /
    • 1985.07a
    • /
    • pp.26-28
    • /
    • 1985
  • The open delta circuit of the power transformer is still often applied, in spite of its reduced utilization of the power. In this paper, a new approach to the calculation of the power and its distribution in each transformer component is presented. For the power evaluation, the method of the complex power analysis is applied.

  • PDF

Discrimination of Arcing Faults from Normal Distribution Disturbances by Wave form Distortion Analysis

  • Kim, C. J.
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.52-57
    • /
    • 1996
  • Detection of arcing high impedance faults has been a perplexing in the power distribution protection. Transient analysis of distribution disturbances for fault discrimination from other normal events is important for a secure protection of the power system. A simple parameter of wave form distortion quantification is used to analyze the behaviors of arcing faults and normal distribution disturbances. Theoretical perspectives of the transients were studied and actual disturbances were examined. From this investigation, a discrimination guideline based on the revised crest factor is developed. The discrimination method has a high potential to enhance the reliability and security for the distribution system protection.

  • PDF