• Title/Summary/Keyword: Power Distribution Impedance

Search Result 190, Processing Time 0.026 seconds

DRAM Package Substrate Using Via Cutting Structure (비아 절단 구조를 사용한 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.76-81
    • /
    • 2011
  • A new via cutting structure in 2-layer DRAM package substrate has been fabricated to lower its power distribution network(PDN) impedance. In new structure, part of the via is cut off vertically and its remaining part is designed to connect directly with the bonding pad on the package substrate. These via structure and substrate design not only provide high routing density but also improve the PDN impedance by shortening effectively the path from bonding pad to VSSQ plane. An additional process is not necessary to fabricate the via cutting structure because its structure is completed at the same time during a process of window area formation. Also, burr occurrence is minimized by filling the via-hole inside with a solder resist. 3-dimensional electromagnetic field simulation and S-parameter measurement are carried out in order to validate the effects of via cutting structure and VDDQ/VSSQ placement on the PDN impedance. New DRAM package substrate has a superior PDN impedance with a wide frequency range. This result shows that via cutting structure and power/ground placement are effective in reducing the PDN impedance.

An analytical study on the Effect of High impedance Transformer to reduce Distribution Fault Current (변압기 임피던스 증가에 의한 배전계통의 고장전류 저감방안의 영향분석)

  • Lee, Hyun-Chul;Lee, Geun-Joon;Hyun, Ok-Bae;Hwang, Si-Dol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.239_240
    • /
    • 2009
  • This paper presents the brief analytical study on 돋 effects of higher impedance transformer(HIT) to reduce distribution system fault current. With the increase of source and load capacity of power system, fault current of D/L is much more increased and, conventional protection equipment-such as sectionalizer and recloser, have to be replaced higher switching capacity. However, this replacements needs a lot of budget to utility. Increase of transformer impedance is can be a countermeasure in practical basis. This paper compares the voltage and fault current magnitude of both cases -%Zt=20% and %Zt2=33.3%(transformer capacity is 75/100MVA). The simulation results show that the steady state voltage of HIT is dropped 5~6% more in peak load, and fault current was decreased about 5kA by high impedance on transformer.

  • PDF

A Study on High Impedance Fault Defection Method Using Neural Nets and Chaotic Phenoma (신경망과 카오스 현상을 이용한 고저항 지락 사고 검출 기법에 관한 연구)

  • Ryu, Chang-Wan;Shim, Jae-Chul;Ko, Jae-Ho;Bae, Young-Chul;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.897-899
    • /
    • 1997
  • The analysis of distribution line faults is essential to the proper protections of the power system. A high impedance fault does not make enough current to cause conventional protective devices. It is well known that undesirable operating conditions and certain types of faults on electric distribution feeders cannot be detected by using conventional protection system. This paper describes an algorithm using back-propagation neural network for pattern recognition and detection of high impedance faults. Fractal dimensions are estimated for distinction between random noise and chaotic behavior in the power system. The fractal dimension of the line current is also used as a indication of the high impedance fault.

  • PDF

A New Algorithm to Reduce the Mal-Operation of DOCR in Bi-directional Power Distribution Systems

  • Jang, Su-Hyeong;Oh, Joon-Seok;Jeong, Ui-Yong;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.585-591
    • /
    • 2016
  • DOCR can be used to efficiently increase the reliability and to protect the bi-directional D/L(Distribution Lines). As more DG(Distributed Generation)s attempt to connect the bi-directional D/L, there is an increasing need for studies of how to use DOCR installed in the D/L. This paper investigates the operating principles of DOCR and presents the results an effect of sequence and fault impedance in L-L(Line to Line) fault. An advanced DOCR operating algorithm is proposed to reduce the mal-operation of conventional DOCR. The proposed algorithm is applied to the bi-directional power flow system and shows that it decreases the mal-operation of DOCR through the computer simulation.

Fast Computation Algorithm for the Impedance Calculation of Irregular Shaped Metal-dielectric-metal Type Power Distribution Plane (임의 형상의 금속-유전체-금속 전력배분기판에 대한 빠른 임피던스 계산 방법)

  • Suh, Young-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.457-463
    • /
    • 2005
  • This paper presents a method for analyzing irregular shaped power distribution networks. The irregular shaped metal-dielectric-metal plane is split into several piece of rectangular segments to calculate the impedance of the irregular shaped plane. Impedance matrix for each rectangular segments is calculated using the Mobius transform method to reduce the calculation time. Then the segmentation and do-segmentation method is applied to the piece of rectangular segments. Applied to the 6 inch by 5 inch size irregular shaped board, the proposed method shows 10 times faster than the electromagnetic or circuit analysis method.

A Study on High Fault Detection In Power System (전력계통의 고임피던스 고장 검출 기법에 관한 연구)

  • Yim, Wha-Yeong;Ryu, Chang-Wan;Ko, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.16-21
    • /
    • 1999
  • The analysis of distribution line faults is essential to the proper protections of the power system. A high impedance fault test, which was carried in Korean electric power systems, it was found that a arcing phenomenon occurred during the high level portion of conductor voltage in each cycle. In this paper, we propose a new method for detection of high impedance faults, which uses the arcing fault current difference during high voltage and low voltage portion of conductor voltage waveform. To extract this difference, we diveded one cycle fault current into equal spanned four data windows according to the magnitude of voltage waveform and applied fast fourier transform(FFT) to each data window. The frequency spectrum of current wavefrom in each portion are used as the inputs of neural network and is trained to detect high impedance faults. The proposed method shows improved accuracy when applied to staged fault data and fault-like load.

  • PDF

Analysis on Electric Shock Current in DC Electricity (직류환경에서 인체에 흐르는 감전전류 분석)

  • Lee, Jin-Sung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.254-259
    • /
    • 2016
  • Recently, DC distribution systems have become a hot issue because of the increase in digital loads and DC generation systems according to the expansion of renewable energy technologies. To obtain the practical usage of DC electricity, safety should be guaranteed. The main concerns for safety are twofold: one side is human protection against electric shocks, and the other is facility protection from short faults. "Effects of current on human beings and livestock" (IEC 60479) defines a human body impedance model in electric shock conditions that consists of resistive components and capacitive components. Although the human body impedance model properly works in AC electricity, it does not well match with the electric shock behavior in DC electricity. In this study, the contradiction of the human body impedance model defined by IEC 60479 in case of DC electricity is shown through experiments for the human body. From the analysis of experimental results, a novel unified human body impedance model in electric shock conditions is proposed. This model consists of resistive components, capacitive components, and an inductance component. The proposed human impedance model matches well for AC and DC electricity environments in simulation and experiment.

Recursive Real Time Fault Locator with Wavelet Method (웨이브릿 기법을 이용한 리커시브 실시간 고장점 표정 시스템 연구)

  • Lee, Sung-Woo;Ha, Bok-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1522-1530
    • /
    • 2008
  • This paper presents a discrete wavelet analysis based algorithm to address the fault impedance calculation under transient state in radial power distribution networks. The fault impedances have been derived under different fault conditions. Furthermore, a recursive fault distance estimation method is proposed utilizing the measured fault impedance and power line parameters. The proposed scheme can resolve the errors caused by the non-homogeneous power lines, the presence of lateral loads since, the fault impedance will always be updated with the recursive form. For the verification of the proposed scheme, a filed test has been peformed with varying fault resistances in the 22.9(kV) radial system. Power meters and fault locators were installed at the substation. It was figured out that the performance of the discrete wavelet and the recursive scheme are very good even for high fault resistance condition.

Modified droop control scheme for load sharing amongst inverters in a micro grid

  • Patel, Urvi N.;Gondalia, Dipakkumar;Patel, Hiren H.
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.81-95
    • /
    • 2015
  • Microgrid, which can be considered as an integration of various dispersed resources (DRs), is characterized by number of DRs interfaced through the power electronics converters. The microgrid comprising these DRs is often operated in an islanded mode. To minimize the cost, reduce complexity and increase reliability, it is preferred to avoid any communication channel between them. Consequently, the droop control method is traditionally adopted to distribute active and reactive power among the DRs operating in parallel. However, the accuracy of distribution of active and reactive power among the DRs controlled by the conventional droop control approach is highly dependent on the value of line impedance, R/X i.e., resistance to reactance ratio of the line, voltage setting of inverters etc. The limitations of the conventional droop control approach are demonstrated and a modified droop control approach to reduce the effect of impedance mis-match and improve the time response is proposed. The error in reactive power sharing is minimized by inserting virtual impedance in line with the inverters to remove the mis-match in impedance. The improved time response is achieved by modifying the real-power frequency droop using arctan function. Simulations results are presented to validate the effectiveness of the control approach.

A Modified Droop Control Method for Parallel Operation in Railway Auxiliary Power Supply Based on Virtual Impedance (철도 차량용 보조전원장치의 병렬 운전을 위한 가상 임피던스 기반의 드룹 제어)

  • An, Chang-Gyun;Choi, Bong-Yeon;Kang, Jin-Wook;Kang, Kyung-Min;Lee, Hoon;Won, Chung-Yeun
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.342-343
    • /
    • 2019
  • This paper explores the power distribution problem of parallel-connected inverter system which supplies auxiliary power for railway facilities. We propose a droop control method which facilities power distribution and restrain of voltage drop by tracking the average power control command by adjusting the virtual impedance. The performance of proposed droop method is verified by the PSIM simulation.

  • PDF