• Title/Summary/Keyword: Power Converter

Search Result 6,238, Processing Time 0.05 seconds

Digital Power IC design using VHDL and FPGA (VHDL과 FPGA를 이용한 Digital Power IC 설계)

  • Kim, Min Ho;Koo, Bon Ha;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.27-32
    • /
    • 2013
  • In this paper, the boost converter was implemented by digital control in many applications of the step-up. The PWM(pulse width modulation) control module of boost converter was digitized at power converter using the FPGA device and VHDL. The boost converter was designed to output a fixed voltage through the PI control algorithm of the PWM control module even if input voltage and output load are variable. The boost converter was digitized can be simplified by reducing the size of the module and the external control components. Thus, the digital power IC has advantageous for weight reduction and miniaturization of electronic products because it can be controlled remotely by setting the desired output voltage and PWM control module. The boost converter using the digital power IC was confirmed through experiments and the good performances were showed from experiment results.

A Three-Phase AC-DC High Step-up Converter for Microscale Wind-power Generation Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching;Chang, En-Chih
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1861-1868
    • /
    • 2016
  • In this paper, a three-phase AC-DC high step-up converter is developed for application to microscale wind-power generation systems. Such an AC-DC boost converter prossessess the property of the single-switch high step-up DC-DC structure. For power factor correction, the advanced half-stage converter is operated under the discontinuous conduction mode (DCM). Simulatanously, to achieve a high step-up voltage gain, the back half-stage functions in the continuous conduction mode (CCM). A high voltage gain can be obtained by use of an output-capacitor mass and a coupled inductor. Compared to the output voltage, the voltage stress is decreased on the switch. To lessen the conducting losses, a low rated voltage and small conductive resistance MOSFETs are adopted. In addition, the coupled inductor retrieves the leakage-inductor energy. The operation principle and steady-state behavior are analyzed, and a prototype hardware circuit is realized to verify the performance of the proposed converter.

Analysis, Design, and Implementation of a Single-Phase Power-Factor Corrected AC-DC Zeta Converter with High Frequency Isolation

  • Singh, Bhim;Agrawal, Mahima;Dwivedi, Sanjeet
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.243-253
    • /
    • 2008
  • This paper deals with the analysis, design, and implementation of a single phase AC-DC Zeta converter with high frequency transformer isolation and power factor correction(PFC) in two modes of operation, discontinuous current mode of operation(DCM), and continuous current mode of operation(CCM). A Digital Signal Processor(DSP) based implementation is carried out for validation of the Zeta converter developed design in discontinuous mode of operation. A comparison of both modes of operation is presented for a 1kW power rating from the point of view of steady state and dynamic behavior, power quality, simplicity, control technique, device rating, and converter size. The experimental results of a developed prototype of Zeta converter are presented for validation of the developed design. It is observed that CCM is most suitable for higher power applications where it requires some complex control and sensing of the additional variables.

Single Stage Power Factor Correction Using A New Zero-Voltage-Transition Isolated Full Bridge PWM Boost Converter

  • Jeong, Chang.-Y.;Cho, Jung-G.;Baek, Ju-W.;Song, Du-I.;Yoo, Dong-W.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.694-700
    • /
    • 1998
  • A novel zero-voltage-transition (ZVT) isolated PWM boost converter for single stage power factor correction (PFC) is presented to improve the performance of the previously presented ZVT converter[8]. A simple auxiliary circuit which includes only one active switch provides zero-voltage-switching (ZVS) condition to all semiconductor devices. (Two active switches are required for the previous ZVT converter) This leads to reduced cost and simplified control circuit comparing to the previous ZVT converter. The ZVS is achieved for wide line and load ranges with minimum device voltage and current stresses. Operation principle, control strategy and features of the proposed converter are presented and verified by the experimental results from a 1.5 kW, 100 KHz laboratory prototype.

  • PDF

A New PWM DC/DC Converter with Isolated Dual Output Using Single Power Stage

  • Lee, Dong-Yun;Hyun, Dong-Seok;Ick Choy
    • Journal of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.312-324
    • /
    • 2002
  • This paper presents a new PWM DC/DC converter with dual output power using single power stage, which has the isolation characteristics between each dual output. The proposed converter topology consists of two switches ($S_B$ and $S_F$) and only single secondary winding. Therefore, the proposed converter has better advantages of not only low cost and small size but also high power density because of using minimum components and devices compared with conventional methods which use multi winding transformers or several converters. The operating principle of the proposed converter topology, which includes the conventional auxiliary ZVT (Zero-Voltage-Transition) circuit to implement soft switching of the main switch, is illustrated in detail and the validity of the proposed converter is verified through several simulated and experimental results.

Hybrid Three-Level DC/DC Converter using an Energy Recovery Snubber (에너지회생스너버를 적용한 하이브리드 3레벨 DC/DC 컨버터)

  • Heo, Ye-Chang;Joo, Jong-Seong;Harerimana, Elysee-Malon;Kim, Eun-Soo;Kang, Cheol-Ha;Lee, Seung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • This paper describes a hybrid multi-output three-level DC/DC converter suitable for a wide, high-input voltage range of an auxiliary power supply for a high-power photovoltaic generating system. In a high-power photovoltaic generating system, the solar panel output voltage depends on solar radiation quantity and varies from 450Vdc to 1100Vdc. The proposed hybrid multi-output three-level DC/DC converter, which is an auxiliary power supply, would be used as power source for control printed circuit boards and relay and cooling fans in a high-power photovoltaic generating system. The proposed multi-output ($24V_{DC}/30A$, $230V_{DC}/5A$) hybrid three-level boost converter, which uses an energy recovery snubber, is controlled by variable-frequency and phase-shifted modulations and can achieve zero-voltage switching with all operating conditions of input voltage and load range. Experimental results of a 2kW prototype are evaluated and implemented to verify the performance of the proposed converter.

The Control of PWM Dual Converters for AC-DC Conversion (AC-DC 변환을 위한 PWM Dual 컨버터의 제어)

  • 정연택;김원철;이사영;조영철;박현준;김길동;이미영
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.314-317
    • /
    • 1997
  • The purpose of this study is developing a converter which is able to convert a 300[KW] power, and is a DC power supply output a 1500[V] DC voltage for inverter driving. The power converter is driven by two converter serisely and keep a high power factor of power source. This system is haven all the characteristic of voltage source converter by having a processing ability of regenerating power. The two converters controls a PWM modulation and output voltage using a only one 16 bit DSP processor.

  • PDF

New Single-Phase Power Converter Topology for Frequency Changing of AC Voltage

  • Jou, Hurng-Liahng;Wu, Jinn-Chang;Wu, Kuen-Der;Huang, Ting-Feng;Wei, Szu-Hsiang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.694-701
    • /
    • 2018
  • This paper proposes a new single-phase power converter topology for changing the frequency of AC voltage. The proposed single-phase frequency converter (SFC) includes a T-type multi-level power converter (TMPC), a frequency decoupling transformer (FDT) and a digital signal processor (DSP). The TMPC can convert a 60 Hz AC voltage to a DC voltage and then convert the DC voltage to a 50 Hz AC voltage. Therefore, the output currents of the two T-type power switch arms have 50 Hz and 60 Hz components. The FDT is used to decouple the 50 Hz and 60 Hz components. The salient feature of the proposed SFC is that only one power electronic converter stage is used since the functions of the AC-DC and DC-AC power conversions are integrated into the TMPC. Therefore, the proposed SFC can simplify both the power circuit and the control circuit. In order to verify the functions of the proposed SFC, a hardware prototype is established. Experimental results verify that the performance of the proposed SFC is as expected.

Analysis of the Gain Characteristic in LLCC Resonant Converter for Plasma Power Supply (플라즈마 전원장치용 LLCC 공진컨버터의 이득 특성 분석)

  • Kwon, Min-Jun;Kim, Tae-Hun;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1992-1999
    • /
    • 2016
  • The plasma process is applied to various industrial fields such as high-tech IT industry, textiles and medical. Therefore, there is increasing interest in the plasma power supply, and demand for power devices of high efficiency and high power density is increased. Plasma power supply for process must solve the arc problem, when the plasma is unstable. The output capacitor is closely related to the arc problem. If the output capacitor is smaller, the damage from the arc problem is reduced. However, the small value of the output capacitor affects the operating characteristics of the power supply. In this paper, a LLC resonant converter is adopted, because it can achieve high efficiency and power density in the plasma DC power supply. However, due to the small value of the output capacitor, the converter is operated as a LLCC resonant converter. Therefore, a gain characteristic of LLCC resonant converter is analyzed by using the FHA (First Harmonic Approximation) in plasma power supply. Simulation and experimental results are presented to verify the characteristic analysis of LLCC Resonant Converter.

A Forward Converter with a Capacitive Output Filter for Isolated LED Lighting Applications (절연형 LED 조명기기를 위한 커패시티브 출력 여과기를 가진 포워드 전력 변환기)

  • Kim, Myungbok
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.394-395
    • /
    • 2011
  • In order to increase the power conversion efficiency and improve the power factor, a modified forward converter is proposed, which adopts a capacitive output filter instead of the inductive output filter of the conventional forward converter. Therefore, the proposed converter has wide input voltage range in opposite to that of the conventional forward converters. Moreover, the proposed converter uses the critical conduction mode for automatic current shaping to improve the power factor. As a result, the proposed converter can achieve quasi-resonant zero-voltage-switching, which can minimize the switching loss of main MOSFET. In addition, the operational principle of the proposed converter is analyzed and the characteristic of the proposed converter is investigated in this paper. To validate the effectiveness of the proposed converter, a prototype of 13W is implemented and the experimental results are discussed in more detail.

  • PDF