• Title/Summary/Keyword: Power Converter

Search Result 6,235, Processing Time 0.041 seconds

Design of Single-Stage AC/DC Converter with High Efficiency and High Power Factor for Low Power Level Applications

  • Lee, Jun-Young;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.123-131
    • /
    • 1997
  • Design of single stage AC/DC converter with high power factor for low power level applications is proposed. The proposed converter gives the good power factor correction, low line current harmonic distortions, and tight output voltage regulations. This converter also has a high efficiency by employing an active clamp method and synchronous rectifiers. To verify the performances of the proposed converter, a 90W-converter has been designed. The modelling of this proposed converter is power formed using an averaging technique and based on this model a detailed analysis is carried out. This prototype meets the IEC555-2 requirements satisfactorily with nearly unity power factor and high efficiency.

  • PDF

Power Loss Analysis of Interleaved Soft Switching Boost Converter for Single-Phase PV-PCS

  • Kim, Jae-Hyung;Jung, Yong-Chae;Lee, Su-Won;Lee, Tae-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • In this paper, an interleaved soft switching boost converter for a Photovoltaic Power Conditioning System (PV-PCS) with high efficiency is proposed. In order to raise the efficiency of the proposed converter, a 2-phase interleaved boost converter integrated with soft switching cells is used. All of the switching devices in the proposed converter achieve zero current switching (ZCS) or zero voltage switching (ZVS). Thus, the proposed circuit has a high efficiency characteristic due to low switching losses. To analyze the power losses of the proposed converter, two experimental sets have been built. One consists of normal devices (MOSFETs, Fast Recovery (FR) diodes) and the other consists of advanced power devices (CoolMOSs, SiC-Schottky Barrier Diodes (SBDs)). To verify the validity of the proposed topology, theoretical analysis and experimental results are presented.

A Novel Soft-Switching Two-Switch Flyback Converter with a Wide Operating Range and Regenerative Clamping

  • Kim, Marn-Go;Jung, Young-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.772-780
    • /
    • 2009
  • A novel soft-switching two-switch flyback converter is proposed in this paper. This converter is composed of two active power switches, a flyback transformer, a blocking diode, and two passive regenerative clamping circuits. The proposed converter has the advantages of a low cost circuit configuration, a simple control scheme, a high efficiency, and a wide operating range. The circuit topology, analysis, design considerations, and experimental results of the new flyback converter are presented.

Zero-Voltage-Switching Boost Converter Using a Coupled Inductor

  • Do, Hyun-Lark
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.16-20
    • /
    • 2011
  • This paper presents a zero-voltage-switching (ZVS) boost converter using a coupled inductor. It utilizes an additional winding to the boost inductor and an auxiliary diode. The ZVS characteristic of the proposed converter reduces the switching losses of the active power switches and raises the power conversion efficiency. The principle of operation and a system analysis are presented. The theoretical analysis and performance of the proposed converter were verified with a 100W experimental prototype operating at a 107 kHz switching frequency.

Soft-Switching PWM Boost Chopper-Fed DC-DC Power Converter with Load Side Auxiliary Passive Resonant Snubber

  • Nakamura, Mantaro;Ogura, Koki;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.161-168
    • /
    • 2004
  • This paper presents a new circuit topology of high-frequency soft switching commutation boost type PWM chopper-fed DC-DC power converter with a loadside auxiliary passive resonant snubber. In the proposed boost type chopper-fed DC-DC power converter circuit operating under a principle of ZCS turn-on and ZVS turn-off commutation, the capacitor and inductor in the auxiliary passive resonant circuit works as the lossless resonant snubber. In addition to this, the voltage and current peak stresses of the power semiconductor devices as well as their di/dt or dv/dt dynamic stress can be effectively reduced by the single passive resonant snubber treated here. Moreover, it is proved that chopper-fed DC-DC power converter circuit topology with an auxiliary passive resonant snubber could solve some problems on the conventional boost type hard switching PWM chopper-fed DC-DC power converter. The simulation results of this converter are illustrated and discussed as compared with the experimental ones. The feasible effectiveness of this soft witching DC-DC power converter with a single passive resonant snubber is verified by the 5kW, 20kHz experimental breadboard set up to be built and tested for new energy utilization such as solar photovoltaic generators and fuel sell generators.

Design of High Quality Regulator with High Efficiency Based on Half-Bridge Topology (하프 브릿지 컨버터를 기반으로 한 고효율을 갖는 고역률 정류기의 설계)

  • 이준영;문건우;정영석;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.400-409
    • /
    • 1997
  • Design of single stage AC/DC converter with high power factor and high efficiency based on half-bridge topology for low power application is proposed. To obtain design equations, modelling and detailed analysis are performed. The proposed converter gives and power factor and high efficiency by employing aynchronous rectifiers. To verify the performances of the proposed converter 90W-converter has been designed. This prototype converter meets IEC555-2 requirements with near unity power factor.

  • PDF

A study of Single-phase Voltage Source PWM Converter for High Power Factor (고역률 제어를 위한 단산 전압원 PWM 컨버터에 관한 연구)

  • 류성식;손진근;정을기;김형원;전희종
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.362-365
    • /
    • 1999
  • In this paper, the method of reducing harmonics and correcting of power factor in single PWM converter associated with diode rectifier and boos converter is studied. The ac-dc converter in which the harmonic distortion in the input current is reduced using a third harmonic injected PWM is proposed. A lower switching power loss and easy configuration o control circuit are obtained by adopting discontinuous current mode. Simulation and experimental results of ac-dc converter with 5[KHz] switching frequency are presented and correction of power factor and reduction of total harmonic distortion was established.

  • PDF

An 18-Pulse Full-Wave AC-DC Converter for Power Quality Improvement

  • Singh, Bhim;Gairola, Sanjay
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.109-120
    • /
    • 2008
  • In this paper, a novel delta/double-fork transformer based 18-pulse full-wave AC-DC converter is designed, modeled, simulated and developed to feed isolated DC varying loads. The proposed AC-DC converter is used for low voltage and large current DC loads in applications such as electrowinning, where isolation is required mainly for stepping down the supply voltage. The proposed converter improves power quality at AC mains and meets IEEE-519 standard requirements at varying loads.

Soft switching high power factor buck converter using loss less snubber circuit (무손실 스너버 회로를 이용한 소프트 스위칭 강압형 고역률 컨버터)

  • 구헌회;변영복;김성철;서기영;이현우
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.77-84
    • /
    • 1997
  • buck type converter doesn't appear when an input voltag eis lower than an output voltage. This is the main reason the buck converter has not been used for high power factor converters. In this paper, soft switching high power factor buck converter is proposed. This converter is composed of diode rectifier, input capacitor can be small enough to filter input current, buck converter with loss less snubber circuit. Converter is operated in discontinous conduction mode, turn on of the switching device is a zero current switching (ZCS) and high powr factor input is obtianed. In addition, zero voltage switching (ZVS) at trun off is achieved and switching loss is reduced using loss less snubber circuit. The capacitor used in the snubber circuit raised output voltage. Therefore, proposed converter has higher output voltage and higher efficiency than conventional buck type converter at same duty factor in discontinous conduction mode operation. High power factro, efficiency, soft switching operation of proposed converter is veified by simulation using Pspice and experimental results.

  • PDF

8kW LLC Isolated Converter Design for ESS Battery Charge/Discharge System (ESS 배터리 충방전 시스템을 위한 8kW급 LLC 절연형 컨버터 설계)

  • Kim, Jinwoo;Baek, Seunghoon;Cho, Younghoon;Koo, Tae-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.161-167
    • /
    • 2018
  • In battery-operated systems, an isolated converter is used to interface the utility grid with the system to increase stability when charging and discharging batteries. Systems such as vehicle-to-grids (V2Gs), on-board chargers, and energy storage systems (ESSs) have recently become popular, and the roles of isolated converters have become important considerations in fabricating such devices. A fixed-frequency LLC converter, which is a type of isolated converter, presents the advantages of high efficiency and high power density by performing zero-voltage switching (ZVS) over wide frequency ranges. However, the magnetizing inductance of the LLC converter should be designed to enable ZVS in all switching devices. Therefore, in this study, the operating characteristics of the LLC circuit are analyzed, and an optimal design method for ZVS operation is established. Moreover, an 8 kW LLC high-efficiency and high-power-density resonant converter is designed and tested for ESS application. The LLC converter achieves 98% efficiency at rated power.