• Title/Summary/Keyword: Power Conversion Unit

Search Result 146, Processing Time 0.029 seconds

Highly Efficient 13.56 MHz, 300 Watt Class E Power Transmitter (13.56 MHz, 300 Watt 고효율 Class E 전력 송신기 설계)

  • Jeon, Jeong-Bae;Seo, Min-Cheol;Kim, Hyung-Chul;Kim, Min-Su;Jung, In-Oh;Choi, Jin-Sung;Yang, Youn-Goo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.805-808
    • /
    • 2011
  • This paper presents a design of high-efficiency and high-power class E power transmitter. The transmitter is composed of 300 Watt class E power amplifier and AC-DC converter. The AC-DC converter converts 220 V and 60 Hz AC to a 290 V DC. The generated DC voltage is directly applied to a bias of the class E power amplifier. Because the converter does not have DC-DC converter unit, it has very high conversion efficiency of about 98.03 %. To minimize the loss at the output of the power amplifier, high-Q inductor was implemented and deployed to the output resonant circuit. As a result, the 13.56 MHz class E power amplifier has a high power-added efficiency of 84.2 % at the peak output power of 323.6 W. The overall efficiency of class E power transmitter, including the AC-DC converter, is as high as 82.87 %.

The Effect of Porthole Shape on Elastic Deformation of Die and Process at Condenser Tube Extrusion (포트홀 형상이 컨덴서 튜브 직접 압출 공정 및 금형 탄성 변형에 미치는 영향)

  • Lee, J.M.;Kim, B.M.;Jo, H.;Jo, H.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.315-318
    • /
    • 2003
  • Recently, condenser tube which is used for a cooling system of automobiles is mainly manufactured by the conform extrusion but this method is inferior as compared with direct extrusion in productivity per the unit time and in the equipment investment. Therefore, it is essential for the conversion of direct extrusion with porthole die. The direct extrusion with porthole die can produce condenser tube which has the competitive power in costs and qualities compared with the existing conform extrusion. This study is designed to evaluate metal flow, welding pressure, extrusion load tendency of mandrel deflection that is affected by variation of porthole shape in porthole die. Estimation is carried out using finite element method under the non-steady state. Also this study was examined into the cause of mandrel fracture through investigating elastic deformation of mandrel during the extrusion.

  • PDF

Estimation of Magnetic Co-Energy in Salient Pole Rotor Type Single Phase SRM

  • Kim, Jun-Ho;Lee, Eun-Woong;Cho, Hyun-Kil;Lee, Jong-Han;Lee, Chung-Won
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.47-53
    • /
    • 2004
  • The salient pole rotor type single phase SRM (switched reluctance motor) uses radial and axial direction magnetic flux simultaneously. Therefore, the output power per unit volume is very high and the shaft length is shorter than other types of SRMs with the same output. Furthermore, it can be manufactured with low cost owing to its simple structure and driving circuit. The prototype was designed using the theory of the traditional rotating machine and 3D FEM analysis. On this paper, the experiment apparatus, which includes the fabricated prototype in previous researches, was fabricated to measure the current and voltage of the prototype. Then the flux linkage, inductance and magnetic co-energy were calculated using the experimental results. Finally, the measured magnetic co-energy was compared with the simulated magnetic co-energy.

A study on assessment of bone mass from aluminum-equivalent image by digital imaging system (디지털 영상 시스템을 이용한 알루미늄 당량화상에 의한 골량 측정에 관한 연구)

  • Kim Jin-Soo;Choi Eui-Hwan;Kim Jae-Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.27 no.1
    • /
    • pp.87-97
    • /
    • 1997
  • The purpose of this study was to evaluate the method for quantitative assessment of bone mass from aluminum-equivalent value of hydroxyapatite by using digital imaging system consisted of Power Macintosh 7200/120, 15-inch color monitor, and GT-9000 scanner with transparency unit. After aluminum-equivalent image made from correlation between aluminum thickness and grey scale, the accuracy of conversion to mass from aluminum-equivalent value was evaluated. Measured bone mass was compared with converted bone mass from aluminum-equivalent value of hydroxyapatite block by correlation formula between aluminum-equivalent value of hydroxyapatite block and hydroxyapatite mass. The results of this study were as follow; 1. Correlation between aluminum thickness and grey level for obtaining aluminum-equivalent image was high positively associated(r²=0.99). Converted masses from aluminum-equivalent value were very similar to measured masses. There was, statistically, no significant difference(P<0.05) between them 2. Correlation between hydroxyapatite aluminum-equivalent and hydroxyapatite mass was shown to linear relation (r²=0.95). 3. Converted masses from aluminum-equivalent value of 3 dry mandible segments were similar to measured masses. The difference between the exposure directions was not significantly different(P<0.05).

  • PDF

FE Simulation of Extrusion Process for Al Multi Cell Tube According to the Changes of the Porthole Shape (포트홀 형상 변화를 고려한 Al 멀티셀 튜브 압출공정 해석)

  • Lee Jung Min;Kim Dong Hwan;Ho Jo Hyung;Kim Byung Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1146-1152
    • /
    • 2005
  • Recently, multi cell tube which is used for a cooling system of automobiles is mainly manufactured by the conform extrusion but this method is inferior as compared with direct extrusion in productivity per the unit time and in the equipment investment. Therefore, it is essential for the conversion of direct extrusion with porthole die. The direct extrusion with porthole die can produce multi cell tube which has the competitive power in costs and qualities compared with the existing conform extrusion. This study is designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection that is affected by variation of porthole shape in porthole die. Estimation is carried out using finite element method under the non-steady state. Also this study was examined into the cause of mandrel fracture through investigating elastic deformation of mandrel during the extrusion.

Design of Digital Transmultiplexing System for PRS Transmission (PRS 전송 방식을 위한 디지털 변환다중장치의 설계)

  • 오용선;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.4
    • /
    • pp.423-434
    • /
    • 1989
  • In this paper, a PRS transmission system using TMRCP as the unit pulse is proposed, which solves the problems occur when the PRS method will be applied to the digital transmultiplexer for each channel. And a design technique which uses this PRS method for the FFT polyphase filter transmultiplexer concept is given. TMRCP-PRS signal require a bandwidth about 2.5KHz(including some guard-band) for a 4-KHz bandlimited voice channel. Therefore, in he 24 channel transmission line, it gives the same advantages as he ordinary PRS system and sloves the inter-channel interference problems. And its good speed-tolerance reduces the time-errors by the environments and the power loss, so it makes the system to be stable. The total system, however, attaces the filters for PCM-PRS, PRS-PCM conversion before and after the transmultiplexer respectively.

  • PDF

Frequency response of Photovoltaic Cell using ZnPc (ZnPc를 이용한 유기태양전지의 주파수 응답 특성)

  • Ahn, Joon-Ho;Kim, Ho-Sik;Park, Jae-Joon;Lee, Won-Jae;Jang, Kyung-Uk;Seo, Dae-Sik;Kim, Tae-Wan;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.285-286
    • /
    • 2005
  • Organic photovoltaic properties were studied in ZnPc/$C_{60}$ heterojunction structure by varying the organic layer thicknesses and exiton blocking layer(EBL). Current density-voltage characteristics of organic photovoltaic cells were measured using Keithley 236 source-measure unit, a 500W xenon lamp (ORIEL 66021) for a light source and Agilent 4294A impedance analyzer in the range of 40 Hz $\sim$ 1 MHz. From the analyses of current-voltage characteristics such as short-circuit current density, open-circuit voltage and power conversion efficiency, optimum thickness of the organic layer were obtained and frequency response such as electrical conductance.

  • PDF

A Novel Donor-Acceptor-Acceptor-Acceptor Polymer Containing Benzodithiophene and Benzimidazole-Benzothiadiazole-Benzimidazole for PSCs

  • Tamilavan, Vellaiappillai;Song, Myungkwan;Agneeswari, Rajalingam;Kim, Sangjun;Hyun, Myung Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1098-1104
    • /
    • 2014
  • New electron deficient acceptor-acceptor-acceptor type of monomer unit composed of weak electron accepting benzimidazole and relatively strong electron accepting benzothiadiazole derivatives namely 4,7-bis(6-bromo-1-(2-ethylhexyl)-1H-benzo[d]imidazol-2-yl)benzo[c][1,2,5]thiadiazole (BBB) was synthesized. The Stille polycondensation of the newly synthesized BBB monomer with electron donating 2,6-bis(trimethyltin)-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene (BDT) afforded donor-acceptor-acceptor-acceptor type of polymer namely 2,6-(4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-alt-4,7-bis(1-(2-ethylhexyl)-1H-benzo[d]imidazol-2-yl)benzo[c][1,2,5]thiadiazole (PBDTBBB). The opto-electrical studies revealed that the absorption band of PBDTBBB appeared in the range of 300 nm-525 nm and its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were positioned at -5.18 eV and -2.84 eV, respectively. The power conversion efficiency (PCE) of the polymer solar cell (PSC) prepared from PBDTBBB:PC71BM (1:2 wt %) blend was 1.90%.

A Multifunctional Material Based on Triphenylamine and a Naphthyl Unit for Organic Light-Emitting Diodes, Organic Solar Cells, and Organic Thin-Film Transistors

  • Kwon, Jongchul;Kim, Myoung Ki;Hong, Jung-Pyo;Lee, Woochul;Lee, Seonghoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1355-1360
    • /
    • 2013
  • We have developed a new multifunctional material, 4,4',4"-tris(4-naphthalen-2-yl-phenyl)amine (2-TNPA), which can be used as a blue-emitting and hole-transporting material in organic light-emitting diodes (OLEDs), as well as a donor material in organic solar cells (OSCs) and an active material in organic thin-film transistors (OTFTs). The OLED device doped with 3% 2-TNPA shows a maximum current efficiency of 3.0 $cdA^{-1}$ and an external quantum efficiency of 3.0%. 2-TNPA is a more efficient hole-transporting material than 4,4'-bis[N-(naphthyl-N-phenylamino)]biphenyl (NPD). Furthermore, 2-TNPA shows a power-conversion efficiency of 0.39% in OSC and a field-effect mobility of $3.2{\times}10^{-4}cm^2V^{-1}s^{-1}$ in OTFTs.

Characterization of Anthraquinone-Based Electron Acceptors for Organic Solar Cells (유기태양전지용 안트라퀴논 기반 전자 받게 분자의 특성 분석)

  • Hyun, Chang-Seok;An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.366-371
    • /
    • 2022
  • Recently many efforts have been made to develop a novel class of non-fullerene electron acceptor materials for high-performance organic solar cells. In this work, anthraquinone derivatives, TMAQ and THAQ, were prepared and their availability as electron acceptor materials for organic solar cells were investigated in terms of optical, thermal, electrochemical properties, and solar cell devices. Compared to TMAQ, a significant bathochromic shift of absorption band was observed for THAQ owing to intramolecular hydrogen-bond-assisted CT interactions. Thanks to the fused aromatic ring structure and benzoquinone unit, both TMAQ and THAQ exhibited a high thermal stability and an efficient electron reduction process. In particular, the intramolecular O-H---O=C hydrogen bond of THAQ plays an important role in improving the thermal stability and electron reduction properties. In the P3HT:acceptor solar cell system, THAQ-based devices had more than ca. 6 times higher power conversion efficiency than TMAQ -based devices. These results serve as a guide for developing high-efficient anthraquinone-based electron acceptor materials.