Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.4.8

Characterization of Anthraquinone-Based Electron Acceptors for Organic Solar Cells  

Hyun, Chang-Seok (Department of Chemistry, The Catholic University of Korea)
An, Byeong-Kwan (Department of Chemistry, The Catholic University of Korea)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.4, 2022 , pp. 366-371 More about this Journal
Abstract
Recently many efforts have been made to develop a novel class of non-fullerene electron acceptor materials for high-performance organic solar cells. In this work, anthraquinone derivatives, TMAQ and THAQ, were prepared and their availability as electron acceptor materials for organic solar cells were investigated in terms of optical, thermal, electrochemical properties, and solar cell devices. Compared to TMAQ, a significant bathochromic shift of absorption band was observed for THAQ owing to intramolecular hydrogen-bond-assisted CT interactions. Thanks to the fused aromatic ring structure and benzoquinone unit, both TMAQ and THAQ exhibited a high thermal stability and an efficient electron reduction process. In particular, the intramolecular O-H---O=C hydrogen bond of THAQ plays an important role in improving the thermal stability and electron reduction properties. In the P3HT:acceptor solar cell system, THAQ-based devices had more than ca. 6 times higher power conversion efficiency than TMAQ -based devices. These results serve as a guide for developing high-efficient anthraquinone-based electron acceptor materials.
Keywords
Organic solar cells; Anthraquinone; Non-fullerene acceptors; Intramolecular hydrogen-bond-assisted CT interactions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Zhang, J. Zhao, P.C.Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, Chem. Rev., 118, 3447 (2018). [DOI: https://doi.org/10.1021/acs.chemrev.7b00535]   DOI
2 A. Wadsworth, M. Moser, A. Marks, M. S. Little, N. Gasparini, C. J. Brabec, D. Baran, and I. McCulloch, Chem. Soc. Rev., 48, 1596 (2019). [DOI: https://doi.org/10.1039/C7CS00892A]   DOI
3 X. Deng, L. Zheng, C. Yang, Y. Li, G. Yu, and Y. Cao, J. Phys. Chem. B, 108, 3451 (2004). [DOI: https://doi.org/10.1021/jp036649i]   DOI
4 X. You, J. Hu, M. Wu, H. Huang, G. Shao, J. Zhang, D. Wu, and J. Xia, Chem. Eur. J., 25, 12137 (2019). [DOI: https://doi.org/10.1002/chem.201902302]   DOI
5 T. T. Do, K. Rundel, Q. Gu, E. Gann, S. Manzhos, K. Feron, J. Bell, C. R. McNeill, and P. Sonar, New J. Chem., 41, 2899 (2017). [DOI: https://doi.org/10.1039/C6NJ03938C]   DOI
6 Y. Ichino, J. P. Ni, Y. Ueda, and D. K. Wang, Synth. Met., 116, 223 (2001). [DOI: https://doi.org/10.1016/S0379-6779(00)00457-4]   DOI
7 S. Norvez, J. Org. Chem., 58, 2414 (1993). [DOI: https://doi.org/10.1021/jo00061a012]   DOI
8 H. Quast and H. L. Fuchsbauer, Chem. Ber., 119, 1016 (1986). [DOI: https://doi.org/10.1002/cber.19861190323]   DOI
9 T. Takeda and T. Akutagawa, Chem. Commun., 56, 10564 (2020). [DOI: https://doi.org/10.1039/D0CC04611F]   DOI
10 T. Takeda, Y. Kasahara, and T. Akutagawa, RSC Adv., 11, 24217 (2021). [DOI: https://doi.org/10.1039/D1RA03985G]   DOI
11 G. B. Rocha, R. O. Freire, A. M. Simas, and J.J.P. Stewart, J. Comput. Chem., 27, 1101 (2006). [DOI: https://doi.org/10.1002/jcc.20425]   DOI
12 B. M. Illescas and N. Martin, C. R. Chim., 9, 1038 (2006). [DOI: https://doi.org/10.1016/j.crci.2005.11.016]   DOI
13 I. C. Ghosekar and G. C. Patil, Semicond. Sci. Technol., 36, 045005 (2021). [DOI: https://doi.org/10.1088/1361-6641/abe21b]   DOI
14 S. Wheeler, F. Deledalle, N. Tokmoldin, T. Kirchartz, J. Nelson, and J. R. Durrant, Phys. Rev. Appl., 4, 024020 (2015). [DOI: https://doi.org/10.1103/PhysRevApplied.4.024020]   DOI
15 P. Mondal, S. Roy, G. Loganathan, B. Mandal, D. Dharumadurai, M. A. Akbarsha, P. S. Sengupta, S. Chattopadhyay, and P. S. Guin, Biochem. Biophys. Rep., 4, 312 (2015). [DOI: https://doi.org/10.1016/j.bbrep.2015.10.008]   DOI
16 J. F. Lee, S.L.C. Hsu, P. I. Lee, H. Y. Chuang, J. S. Chen, and W. Y. Chou, Sol. Energy Mater. Sol. Cells, 96, 218 (2012). [DOI: https://doi.org/10.1016/j.solmat.2011.09.060]   DOI
17 M. Eo, H. J. Bae, M. Hong, Y. Do, S. Cho, and M. H. Lee, Dalton Trans., 42, 8104 (2013). [DOI: https://doi.org/10.1039/C3DT50509J]   DOI
18 J. Reinhardt, M. Grein, C. Buhler, M. Schubert, and U. Wurfel, Adv. Energy Mater., 4, 1400081 (2014). [DOI: https://doi.org/10.1002/aenm.201400081   DOI
19 G. Zarren, B. Nisar, and F. Sher, Mater. Today Sustainability, 5, 100019 (2019). [DOI: https://doi.org/10.1016/j.mtsust.2019.100019]   DOI
20 L. Xu, C. Liu, Z. Qin, R. Jiang, and Y. Li, Eur. J. Org. Chem., 2013, 300 (2013). [DOI: https://doi.org/10.1002/ejoc.201200980]   DOI