• Title/Summary/Keyword: Power Conversion System

Search Result 1,262, Processing Time 0.03 seconds

The Characteristics Analysis of New Dc 48[V] Telecommunication Power System using Forward Type three Phase Rectifier (포워드형 3선 PWM 정류기를 이용한 새로운 DC 48[V] 통신용 전원시스템의 특성 해석)

  • Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.34-40
    • /
    • 2006
  • This paper proposed power system for new DC 49[V] telecommunication using forward three-phase PWM rectifier power factor and efficiency for improvement of ripple voltage. Proposed power system for DC 48[V] telecommunication that consists of power conversion devices including switch, inductor and condenser were made between each line, in power inverter device of each switch control turn-on in period of continuity time control to get power factor '1' of sine wave current and on-off of switch lessens peak current that was happened and got conversion efficiency 92.1[%] composing in PWM rectifier of forward form instead of general PWM rectifier. Also, harmonic input regulation value(IEC61000-3-2 Class-As) satisfy input current and reduce ripple factor of output voltage in state that distortion of three-phase supply is overlapped each other.

Comparison Study on Power Output Characteristics of Power Management Methods for a Hybrid-electric UAV with Solar Cell/Fuel Cell/Battery

  • Lee, Bohwa;Kwon, Sejin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.631-640
    • /
    • 2016
  • A dual-mode power management for a hybrid-electric UAV with a cruise power of 200W is proposed and empirically verified. The subject vehicle is a low-speed long-endurance UAV powered by a solar cell, a fuel cell, and a battery pack, which operate in the same voltage bounds. These power sources of different operational characteristics can be managed in two different methods: passive management and active management. This study proposes a new power management system named PMS2, which employs a bypass circuit to control the individual power sources. The PMS2 normally operates in active mode, and the bypass circuit converts the system into passive mode when necessary. The output characteristics of the hybrid system with the PMS2 are investigated under simulated failures in the power sources and the conversion of the power management methods. The investigation also provides quantitative comparisons of efficiencies of the system under the two distinct power management modes. In the case of the solar cell, the efficiency difference between the active and the passive management is shown to be 0.34% when the SOC of the battery is between 25-65%. However, if the SOC is out of this given range, i.e. when the SOC is at 90%, using active management displays an improved efficiency of 6.9%. In the case of the fuel cell, the efficiency of 55% is shown for both active and passive managements, indicating negligible differences.

Stability Control of Energy Storage Voltage Source Inverters in Isolated Power Systems

  • Hu, Jian;Fu, Lijun
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1844-1854
    • /
    • 2018
  • Isolated power systems (IPS) are often characterized by a weak grid due to small power grids. The grid side voltage is no longer equivalent to an ideal voltage source of an infinitely big power grid. The conversion control of new energy sources, parameter perturbations as well as the load itself can easily cause the system voltage to oscillate or to become unstable. To solve this problem, increasing the energy-storage power sources is usually used to improve the reliability of a system. In order to provide support for the voltage, the energy-storage power source inverter needs an method to control the voltage source. Therefore, this paper has proposed the active damping control of a voltage source inverter (VSI) based on virtual compensation. By simplifying the VSI double closed-loop control, two feedback compensation channels have been constructed to reduce the VSI output impedance without changing the characteristics of the voltage gain of a system. This improvement allows systems to operate stably in a larger range. A frequency-domain analysis, and simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

Optimal Sizing of Distributed Power Generation System based on Renewable Energy Considering Battery Charging Method (배터리 충전방식을 고려한 신재생에너지 기반 분산발전시스템의 용량선정)

  • Kim, Hye Rim;Kim, Tong Seop
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.34-36
    • /
    • 2021
  • The interest in renewable energy-based distributed power generation systems is increasing due to the recognitions of the breakthrough of existing centralized power generation, energy conversion, and environmental problems. In this study, the optimal capacity was selected by simulating a distributed power generation system based on PV and WT using lead acid batteries as the energy storage system. CHP was adopted as the existing power source, and the optimal capacity of the system was derived through MOGA according to the operating modes(full load/part load) of the existing power source. In addition, it was confirmed that the battery life differs when the battery charging method is changed at the same battery capacity. Therefore, for economical and stable power supply and demand, the capacity selection of the distributed generation system considering the battery charging method should be performed.

Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

  • Hadano, Kesayoshi;Lee, Ki Yeol;Moon, Byung Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 2017
  • As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1) setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2) workability in installation and maintenance operations; (3) high energy conversion potential; and (4) low cost. In this system, neither the wall(s) of the chambers nor the energy conversion device(s) are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s). Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

Intelligent Digital Redesign of Uncertain Nonlinear Systems Using Power Series (Power Series를 이용한 불확실성을 포함된 비선형 시스템의 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae;Kim, Do-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.496-498
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).

  • PDF

The Development of AC Motor Control System Using DIP-IPM (DIP-IPM을 이용한 전동기 제어시스템 개발)

  • Kim, Nam-Hun;Baik, Won-Sik;Kim, Min-Huei;Kim, Dong-Hee;Choi, Ho-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.232-234
    • /
    • 2002
  • Due to development of power electronics technology, power conversion system are tend to small size, easy to use and light weight. Especially motor control system have increased concerns and interests about IPM(Intelligent Power Module) inverter, which contains protection circuit, drive circuit and power devices. So, we manufactured 3-phase inverter using DIP-IPM(Dual in-line package IPM) PS21245- E(1.5 Kw) made by MITSUBISHI Electric. Some of these features include -HVIC to Provide level shifting and gate drive for high-side IGBTs. The interface circuit between pwm controller and DIP-IPM can made by direct connection. In order to validate dynamic performance of the proposed system, the actual experiment worked out at wide speed range. The developed system is shown as a good dynamic characteristics.

  • PDF

Analysis of an AC/DC Resonant Pulse Power Converter for Energy Harvesting Using a Micro Piezoelectric Device

  • Chung Gyo-Bum;Ngo Khai D.T.
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.247-256
    • /
    • 2005
  • In order to harvest power in an efficient manner from a micro piezoelectric (PZT) device for charging the battery of a remote system, a new AC/DC resonant pulse power converter is proposed. The proposed power converter has two stages in the power conversion process. The first stage includes N-type MOSFET full bridge rectifier. The second stage includes a boost converter having an N-type MOSFET and a P-type MOSFET. MOSFETs work in the $1^{st}$ or $3^{rd}$ quadrant region. A small inductor for the boost converter is assigned in order to make the size of the power converter as small as possible, which makes the on-interval of the MOSFET switch of the boost converter ultimately short. Due to this short on-interval, the parasitic junction capacitances of MOSFETs affect the performance of the power converter system. In this paper, the performance of the new converter is analytically and experimentally evaluated with consideration of the parasitic capacitance of switching devices.

Output Control Simulation of PV-AF Generation System under Various Weather Conditions (다양한 기상조건하에서의 AF기능을 갖는 태양광발전시스템의 출력제어 시뮬레이션)

  • Seong, Nak-Gueon;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1364-1366
    • /
    • 2002
  • The Photovoltaic(PV) generation system is a promising source of energy for the future. Since the need for renewable energy has been increased, the research of PV generation system has also been progressed. Recently, cost down of PV generation system has been accomplished and practical technologies of the solar energy developed, Moreover, grid connected PV generation system are becoming actual and general. Operational technology of the grid connected PV generation system is being a hot issue. Power output of PV system is directly affected by wether conditions. When AC power supply is needed, power conversion by an inverter and a MPPT control are necessary. In this paper, for stability improvement of PV generation system. Active filter(AF) function is added to PV generation system, and simulations of PV-AF system under various weather conditions are performed.

  • PDF

Modeling and Analysis of Leakage Currents in PWM-VSI-Fed PMSM Drives for Air-Conditioners with High Accuracy and within a Wide Frequency Range

  • Sun, Kai;Lu, Yangjun;Xing, Yan;Huang, Lipei
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.970-981
    • /
    • 2016
  • Leakage currents occur in pulse-width-modulated voltage source inverter (PWM-VSI)-fed permanent magnet synchronous motor (PMSM) drives for air-conditioners, which seriously affect system safety and operation performance. High accuracy modeling and prediction of leakage currents are key issues for the design and implementation of air-conditioning products. In this study, the generation mechanism of leakage currents is discussed. A systematic modeling approach of leakage currents is proposed, including the modeling of leakage current sources and leakage current paths. By using the proposed approach, the complete model of leakage currents in PWM-VSI-fed PMSM drives for air-conditioners has been developed based on the extraction of all parameters. A comparison between the simulated leakage currents based on the developed model and measured leakage currents in the outdoor unit of an air-conditioning product is conducted. The comparison verifies the effectiveness of the proposed modeling approach, and the developed model exhibits high accuracy within a wide frequency range.