• Title/Summary/Keyword: Power Conversion System

Search Result 1,262, Processing Time 0.032 seconds

Development of 3 Phase PWM Converter using Analog Hysteresis Current Controller (아날로그 히스테리시스 전류 제어기를 적용한 3상 PWM 컨버터 개발)

  • Lee Young-kook;Noh Chul-won
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.372-376
    • /
    • 2001
  • Due to several advantages of Pulse Width Modulation(PWM) Converter, such as unity power factor operation, elimination of low-order harmonics and regeneration of motor braking energy to source, the application range of PWM Converter has been rapidly extended in industrial application. Nowadays, vector control algorithm and space vector PWM(SVPWM) method are applied to improve the performances of PWM Converter, but vector control algorithm and SVPWM require to use Microprocessor and other digital devices in hardware, causing costly and somewhat large dimension system. In every practical application of energy conversion equipments, the design and implementation should be carried out considering cost and performance. High performance and low cost is the best choice for energy conversion equipments. So, this paper presents the practical design method and implementation results of 3-phase PWM Converter with analog hysteresis current controller, and verifies the performances of unit power factor operation and energy regeneration operation via experimental results.

  • PDF

Hoop Energy Storage System(HESS) for Electric Power Utility (전력 계통에의 이용을 위한 후프 에너지 저장 시스템)

  • 백광현;정기형
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.173-178
    • /
    • 1995
  • Hoop Energy Storage System(HESS) for electric power utility were discussed laying primary stress on the diurnal load leveling of Korean electric power system. A number of potential storage technologies are outlined and possibility for real application of HESS was suggested. Primary system variables were determined on the basis of state of electric power demand-supply of 1994. As a prerequisite technology for HESS, noncontacting support using magnetic pressure and high power conversion were discussed.

  • PDF

A Study on Residential Hybrid Distribution System for Reducing Power Conversion Loss (전력 변환 손실 저감을 위한 하이브리드 주거배전시스템)

  • Byen, Byeng-Joo;Seo, Hyun-Uk;Choi, Jung-Muk;Lee, Young-Jin;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.413-421
    • /
    • 2013
  • This paper proposes residential hybrid distribution system that can supply AC power and DC power to AC load and DC load at the same time. This hybrid distribution system consists of three parts: bidirectional inverter, step-up converter and step-down converter. Also that is used to supply voltage to home application is classified of AC load and DC load as load characteristics. The performance of proposed hybrid distribution system is validated through the hardware implementation and the experimental results.

An Experimental Study on LTD Stirling Engine (MM-7) for the Development of TM Electric Conversion System (TM발전변환기 개발을 위한 저온도차 스털링엔진(MM-7)의 성능실측 연구)

  • Kim, Yeongmin;Chen, Kuan;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • This study has been carried out to develop TM (Thermal to Mechanical) conversion systems for electric power generation using one of the Low Temperature Differential (LTD) Stirling engines called MM-7 capable of harnessing low temperature waste heat whose temperature is only $20{\sim}30^{\circ}C$ above the ambient. Measurements were made on the torque and rpm for a number of temperature differentials between the engine hot and cold ends, which could be effectively applied in developing the most suitable configuration for the high performance TM (Thermal to Mechanical) conversion system.

A Study on the ESS Integration Plan with Inner PCS of Wave-Offshore Hybrid Generation System for Maximizing Power Profile Stability (복합발전의 공급전력 안정성 극대화를 위한 파력발전 PCS의 BESS 연동방안 연구)

  • Jung, Seungmin;Kim, Hyun-Wook;Yoo, Yeuntae;Jang, Gilsoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.82-91
    • /
    • 2014
  • The combined generator system by integrating several renewable energy sources can share the electrical infrastructure and therefore have the advantage of constructing not only the transmission system but also the power conversion system. Among the various combined renewable system, the wind power and wave power has a high possibility of future growth due to the economic feasibility in offshore environment. This kind of large-scale combined systems might be follow the determination by the transmission system operator's directions and control the output profile by focusing at PCC. However, both renewable energies are depend on the unpredictable environmental variation; it is needed to do the compensation devices. In this paper, the ESS compensation plan is proposed to do output determination of the combined generator system by paying attention to active power of utility grid with the analysis of the controllable elements of the wind and wave power generator. The improvement of the new application technique of the combined system is confirmed through using the PSCAD/EMTDC. The entire simulation process was designed by adopting the active power control according to the reference signal of TSO.

Converting a Lens to Its Equivalent as Referenced to Pupil Imaging (동의 결상을 기준으로 한 등가렌즈 변환에 대한 연구)

  • Bang, Hyun Jin;Lee, Jong Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.1
    • /
    • pp.14-20
    • /
    • 2014
  • The equivalent of a thick lens is a lens which has the same power of refraction and paraxial imaging characteristics for a reference ray, but with a different axial thickness. In this study, thick lenses of an optical system were converted to their equivalent lenses referenced to pupil imaging. Aberration changes due to the lens conversion were compared to the general equivalent lens conversion referenced to object imaging.

Zero-Voltage-Switching Boost Converter Using a Coupled Inductor

  • Do, Hyun-Lark
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.16-20
    • /
    • 2011
  • This paper presents a zero-voltage-switching (ZVS) boost converter using a coupled inductor. It utilizes an additional winding to the boost inductor and an auxiliary diode. The ZVS characteristic of the proposed converter reduces the switching losses of the active power switches and raises the power conversion efficiency. The principle of operation and a system analysis are presented. The theoretical analysis and performance of the proposed converter were verified with a 100W experimental prototype operating at a 107 kHz switching frequency.

Design and implementation of a power conversion module for solid state transformers using SiC devices (배전용 반도체 변압기 구현을 위한 SiC기반 전력변환회로 단위모듈 설계에 관한 연구)

  • Lim, J.;Cho, Y.
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.63-64
    • /
    • 2016
  • This paper deal with single module design of 13.2kVrms/10kVA solid state transformers exchanging conventional transformer. We can design compact hardware system to reduce size and get higher switching frequency by using SiC devices. As a result by comparing simulation results with experiment result, it is verified.

  • PDF

An Optimal Maximum Power Point Tracking Algorithm for Wind Energy System in Microgrid

  • Nguyen, Thanh-Van;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.382-383
    • /
    • 2018
  • To increase the efficiency of a wind energy conversion system (WECS), the maximum power point tracking (MPPT) algorithm is usually employed. This paper proposes an optimal MPPT algorithm which tracks a sudden wind speed change condition fast. The proposed method can be implemented without the prior information on the wind turbine parameters, generator parameters, air density or wind speed. By investigating the directions of changes of the mechanical output power in wind turbine and rotor speed of the generator, the proposed MPPT algorithm is able to determine an optimal speed to achieve the maximum power point. Then, this optimal speed is set to the reference of the speed control loop. As a result, the proposed MPPT algorithm forces the system to operate at the maximum power point by using a three-phase converter. The simulation results based on the PSIM are given to prove the effectiveness of the proposed method.

  • PDF

Comparative Study and Simulation of P&O Algorithm using Boost Converter for a Photovoltaic System

  • Ganzorig, Batdelger;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.395-403
    • /
    • 2019
  • The excessive need of power is creating an unbalance situation in power sector, where solar energy is one of the best solutions among other energy sources to mitigate this demand. It is globally accepted because of its flexibility and long life compared to others. A lot research is going on to enhance the energy efficiency by introducing photovoltaic (PV) power generation technology, but still irradiation of PV power is the major problem. In this manuscript, we have designed PV module using single diode methodology and also the solar conversion efficiency was boosted with maximum power point tracking (MPPT) by using perturb and observe (P&O) algorithm. The simulation was done for $1000W/m^2$ and $800W/m^2$ at solar irradiance in cell temperature of 25C and 40C degree levels in PSIM tool.