• Title/Summary/Keyword: Power Conversion System

Search Result 1,262, Processing Time 0.029 seconds

A Novel Battery Charger/Discharger For the Parallel Connected Battery Module Satellite Power System (인공위성 병렬 연결 배터리 모듈 시스템을 위한 새로운 배터리 충.방전기)

  • 이기선;조윤제;장기영;조보형
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.537-543
    • /
    • 2000
  • A novel integrated battery charger/discharger converter for a standardized battery module is proposed. Instead of using separate charger and discharger converters, it integrates these two converters into a single converter in order to minimize the size. The integrated charger/discharger converter not only regulates the solar array output power including the peak power tracking capability but also controls the battery charging/discharging current depending on the solar array output power and the load power. In addition, it offers a regulated bus voltage which simplifies the power distribution/conversion for the pay load.

  • PDF

Development of Measurement System for Harmonic Analysis of Electric Equipment (전기설비의 고조파 분석을 위한 측정 시스템의 개발)

  • Yoo, Jae-Geun;Lee, Sang-Ik;Jeon, Jeong-Chay
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.259-261
    • /
    • 2002
  • Recently, according to the spread of semiconductor applied technology like motor speed control contrivance, power conversion installation and so on, harmonic ingredients occurred in switching operation flow into a distribution system and increase voltage distortion of distribution system and bring on obstacles like damage, lowering of capability, false operation and so on of various electrical installation. So, in order to consider a countermeasure to limit occurrence quantity of harmonic source, harmonic interception and others, precision measurement and analysis on voltage, current, power, power factor, the each ingredient of harmonic order, the percentage of total harmonic distortion and so forth are needed. In this paper monitoring system to measure and analyze power quality connected with power harmonics was developed and it's performance is verified by measuring and analyzing three-phase voltage and current of R, S, T in the three-phase and four-wire system using the developed measurement system.

  • PDF

A study on the Residential PV system with BESS (전력저장장치를 적용한 주택용 PV시스템에 관한 연구)

  • Na, Jong-Deok;Park, Jeong-Guk;Park, Jeong-Min;Lee, Kang-Yeon;Baek, Hyung-Lae;Cho, Geum-Bae;Pia, Zheng-Guo
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.265-267
    • /
    • 2005
  • In this paper presents residential PV system based on battery energy storage system for managing the electric power, a pattern of daily operation considering the load characteristic of the house, the generation characteristic of PV power, and utility power leveling. For apply to control algorithm, we consider the load on monthly power consumption trend and daily usage pattern. As for the control of the proposed system, to increase the conversion efficiency of the PV power, bidirectional converter is used for MPPT and SVPWM inverter. An experimental system is implemented, and some experimental results are provided to demonstrate the effectiveness of the proposed system.

  • PDF

Spherical Flux Concentration Transmitter for Omnidirectional Wireless Power Transfer with Improved Power Transmission Distance (전력전송거리 증가를 위한 구형 자속 집중 송신부 구조의 설계 및 해석)

  • Park, Kwang-Rock;Cha, Hwa-Rang;Kim, Rae-Young;Kim, Tae-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.181-187
    • /
    • 2020
  • In this study, we propose a spherical flux concentration structure for omnidirectional wireless power transfer. Omnidirectional wireless power transfer technology is a method that can transmit power to a transmitter located in an arbitrary position in a two-dimensional or three-dimensional space. However, to improve the power transfer distance in a wireless power transfer system, the diameter of the coil or the number of windings must increase, thereby increasing the size of the transmitter. The proposed transmitter structure adds a ferrite core inside the transmitter coil so that the magnetic flux generated by the transmitter is directed toward the position of the receiver. As a result, the flux linkage and the mutual inductance increase. By implementing the omnidirectional wireless power transfer system using the proposed structure, the power transfer distance can be improved by 65% compared with the conventional system without increasing the size of the transmitter. Simulation shows that the proposed spherical flux concentration structure increases the mutual inductance of the omnidirectional wireless power transmission system.

Assessing the Impact of Advanced Technologies on Utilization Improvement of Substations

  • Han, Dong;Yan, Zheng;Zhang, Dao-Tian;Song, Yi-Qun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1921-1929
    • /
    • 2015
  • The smart substation is the heart of a transmission system, which is particularly emphasized as the most significant composition of smart grids in China. In order to assess the functionality performance of substation technologies, this paper presents methods used to identify the most promising solutions for smart substation design and to evaluate the technical levels of available technologies. The multi-index optimization model is presented to address the issue of smart substation planning. A mathematical model of the planning decision problem is established with multiple objectives consisting of economic, reliability, and green key indices, and many kinds of concerns including physical and environmentally friendly operations are formulated as a set of constraints. With respect to the assessment of the technical level regarding integration of advanced technologies into a substation, a modified grey whitenization weight function is adopted to structure a novel grey clustering method. The proposed grey clustering approach is used to overcome the difficulty of insufficient quantitative assessment capacity for traditional methods. The evaluation of technical effects provides the classification definition for the development phase and the maturity level of the smart substation. The effectiveness of the proposed approaches in planning decision-making and evaluation of construction efforts is demonstrated with case studies involving the actual smart substation projects of Wenchongkou substation in China Southern Power Grid (CSG) and Mengzi substation in State Grid Corporation of China (SGCC).

Optimal Switching Angle Control of a Switched Reluctance Motor: Maximization of Energy Conversion Ratio

  • Park, Sung-Jun;Lee, Sang-Hun;Ahn, Jin-Woo;Hong, Keum-Shik;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.156-163
    • /
    • 2001
  • In this paper an optimal switching angle control of a switched reluctance motor (SRM) drive system is investigated for achieving maximum energy conversion ratio. A new magnetizing method is proposed with a low switching frequency. The proposed algorithm maximizes the positive energy conversion region, which is directly related to the mechanical output, and reduces the reactive power region with the same field energy region. As a consequence, a torque ripple is also sufficiently reduced compared with that of the conventional switching angle magnetizing method. Experimental results show that the proposed scheme provides a high efficiency and a low ripple drive.

  • PDF

Conversion Loss for the Quantizer of GPS Civil Receiver in Heavy Wideband Gaussian Noise Environments (강한 광대역정규잡음 환경에서 GPS 상용 수신기 양자화기의 변환 손실 분석)

  • Yoo, Seungsoo;Kim, Sun Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.792-797
    • /
    • 2013
  • This paper has derived the conversion loss according to the synchronized condition between the transmitted and locally generated spreading signals for the civil global positioning system (GPS) receiver in the heavy wideband Gaussian noise environments. From this, the outputs of the 2-bit nonuniform quantizer, which has the minimum conversion loss, is set to ${\pm}1$ and ${\pm}2$, while the quantization step size is approximated to the jamming-to-signal power ratio.

A Study on Feasibility Analysis and Optimum Range Calculation Model by Conversion of Water Supply System (상수도 급수방식 전환의 타당성 분석 및 최적 범위 산정모델 연구)

  • Park, Junyeol;Shin, Hwisu;Seo, Jeewon;Kim, Kibum;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.2
    • /
    • pp.177-186
    • /
    • 2017
  • This study concerned the analysis on the efficiency of the conversion of water tank type supply system to direct water supply system to examine the feasibility of the conversion, as well as the calculation of optimal conversion range that enables the supply of safe, high-quality water at stable pressure in accordance with the standards of water supply facility. The results of this research showed that when converting water supply system from water tank type supply system to direct water supply system, more nodal points could be properly converted and more reduction of electricity usage was expected in case water pressure rather than residence time was fixed. This means that higher efficacy can be obtained by fixing water pressure when converting water supply system. However, since the number of the locations that received on-spot inspection was small and the electricity usage measured was not exclusively by water supply facility, it is difficult to judge that such reduction of electricity usage accurately represents reduced electricity usage by water supply facility alone. therefore, after having secured on-spot information about a larger number of locations in apartment complexes that have converted water supply system, and utilizing information about electricity usage exclusively by water supply facility, the proposed method of this research could be applied to accurately deducing expected reduction of electricity usage by water supply facilities of various other apartment complexes. It is also considered possible to deduce an effective operation method of water supply system by finding out an area that shows low pressure or low residual chlorine concentration in the optimal conversion range of water supply, followed by estimating the proper location of pumping station or the proper chlorine dosage at the power purification plant that supply water to the target area.

A Study on the Performance of 100 W Thermoelectric Power Generation Module for Solar Hot Water System (태양열 온수 시스템에 적용 가능한 100 W급 열전발전 모듈 성능에 관한 연구)

  • Seo, Ho-Young;Lee, Kyung-Won;Yoon, Jeong-Hun;Lee, Soon-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.21-32
    • /
    • 2019
  • Solar hot water system produces hot water using solar energy. If it is not used effectively, overheating occurs during the summer. Therefore, a lot of research is being done to solve this. This study develops thermoelectric power module applicable to solar hot water system. A thermoelectric material can directly convert thermal energy into electrical energy without additional power generation devices. If there is a temperature difference between high and low temperature, it generate power by Seebeck effect. The thermoelectric module generates electricity using temperature differences through the heat exchange of hot and cold water. The water used for cooling is heated and stored as hot water as it passes through the module. It can prevent overheating of Solar hot water system while producing power. The thermoelectric module consists of one absorption and two radiation part. There path is designed in the form of a water jacket. As a result, a temperature of the absorption part was $134.2^{\circ}C$ and the radiation part was $48.6^{\circ}C$. The temperature difference between the absorption and radiation was $85.6^{\circ}C$. Also, The Thermoelectric module produced about 122 W of irradiation at $708W/m^2$. At this time, power generation efficiency was 2.62% and hot water conversion efficiency was 62.46%.

A 1.485 Gbps Wireless Video Signal Transmission System at 240 GHz (240 GHz, 1.485 Gbps 비디오신호 무선 전송 시스템)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.105-113
    • /
    • 2010
  • In this paper, a 1.485 Gbps video signal transmission system using the carrier frequency of 240 GHz band was designed and simulated. The sub-harmonic mixer based on Schottky barrier diode was simulated in the transmitter and receiver. Both of heterodyne and direct detection receivers were simulated for each performance analysis. The ASK modulation was used in the transmitter and the envelop detection method was used in the receiver. The transmitter simulation results showed that the RF output power was -11.4 dBm($73{\mu}W$), when the IF input power was -3 dBm(0.5 mW) at the LO power of 7 dBm(5 mW) in sub-harmonic mixer, which corresponds to SSB(Single Side Band) conversion loss of 8.4 dB. This value is similar to the conversion loss of 8.0 dB(SSB) of VDI's commercial model WR3.4SHM(220~325 GHz) at 240 GHz. The combined transmitter and receiver simulation results showed that the recovered signal waveforms were in good agreement to the transmitted 1.485 Gbps NRZ signal.