• Title/Summary/Keyword: Power Clamp

Search Result 251, Processing Time 0.021 seconds

Forward Converter Using 300W Planar Transformer (300W 평면 변압기적용 포워드 컨버터)

  • Choi, S.H;Park J.Y;Kim E.S
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.560-567
    • /
    • 2004
  • In this paper, the design and implementation of a high power(300W) forward converter using a planar transformer is presented. The overall size and volume of the converter is decreased by replacing a planar transformer in stead of using a conventional winding transformer. Due to the decreased size and volume, power density of the applied forward converter is increased. Also, in this paper, the 300W ZVS forward converter with active clamp snubber circuit is compared to the 300W hard switching forward converter planar transformer, the decreased size and volume, the 300W ZVS forward converter with active clamp snubber circuit, 30W hard switching forward converter.

Active-clamp Class-E High Frequency Resonant Inverter with Single-st (단일 전력단으로 구성된 Active-clamp E급 고주파 공진 인버터)

  • Kang, Jin-Wook;Won, Jae-Sun;Kim, Dong-Hee;Ro, Chae-Gyun;Sim, Kwang-Yeal;Le, Bong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1193-1195
    • /
    • 2002
  • This paper presents Active-clamp Class-E high frequency resonant inverter with single-stage. The proposed circuit is integrated Active-c class-E circuit to boost converter with the funct power factor correction. Boost converter is opera positive and negative half cycle respectively at frequency(60Hz), operating in Discontinuous Con Mode(DCM) of boost converter performs high p factor. By adding active-clamp circuit in Cl inverter, main switch of inverter part is operat only ZVS(Zero Voltage Switch), but also reduce switching voltage stress of main switch. Simulation result using Psim4.1 show that the p prove the validity of theoretical analysis. This proposed inverter will be able to be pract used as a power supply in various fields are ind heating applications, DC-DC converter etc.

  • PDF

Low Voltage Active-Clamp Forward Converter with MOSFET Synchronous Rectification (MOSFET 동기정류를 이용한 저전압 능동 클램프 Forward 컨버터에 관한 연구)

  • Kim, Hee-Jun;Ji, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.110-113
    • /
    • 1993
  • The MOSFET synchronous rectification in the Active-Clamp Forward converter is presented. The Active-Clamp Forward converter has little dead time during the off time of the main switch and it is suitable for the MOSFET synchronous rectification comparing to the other Forward converter topologics. Using the MOSFET synchronous rectification on the Active-Clamp Forward converter with 3.3[V] output and 500[kHz] switching frequency, the improvement of efficiency is achieved comparing with the conventional Schottky barrier diode rectification.

  • PDF

Motion Control of Injection Moulding Cylinder with Electric-Hydrostatic Drives (전기-정유압 구동식 사출성형 실린더의 운동제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.26-31
    • /
    • 2008
  • This paper deals with the issue of position tracking control of a clamp-cylinder for injection moulding machine with electric-hydrostatic drives. A fixed displacement pump is utilized in combination with AC motor in order to directly control a clamp-cylinder. A clamp-cylinder may be required to operate under a variety of operating conditions. Therefore, robust control performance is important in position tracking control applications. In order to accommodate mismatches between the real plant and the model used for controller design, discrete-time sliding mode control is developed by combining a velocity feedforward loop. From tracking control experiments, it is shown that significant reduction in position tracking error is achieved through the use of sliding mode control.

  • PDF

A New Controllable Active Clamp Algorithm for Switching Loss Reduction in a Module Integrated Converter System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.465-471
    • /
    • 2014
  • This paper proposes a new switching algorithm for an active clamp snubber to improve the efficiency of a module integrated converter system. This system uses an active clamp method for the snubber circuit for the efficiency and reliability of the system. However, the active clamp snubber circuit has the disadvantage that system efficiency is decreased by switch operating time because of heat loss in resonance between the snubber capacitor and leakage inductance. To address this, this paper proposes a new switching algorithm. The proposed algorithm is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time. Also, the snubber switch is operated at zero voltage switching by turning on the snubber switch before main switch turn-off. Simulation and experimental results are presented to show the validity of the proposed new active clamp control algorithm.

Characteristic Estimation of Single-Stage Active-Clamp Type High Frequency Resonant Inverter (단일 전력단 능동 클램프형 고주파 공진 인버터의 특성 평가)

  • 원재선;강진욱;김동희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.114-122
    • /
    • 2004
  • This paper presents a novel single-stage active-clamp type high frequency resonant inverter. The proposed topology is integrated full-bridge boost rectifier as power factor corrector and active-clamp type high frequency resonant inverter into a single-stage. The input stage of the full-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. By adding additional active-clamp circuit to conventional class-E high frequency resonant inverter, main switch of inverter part operates not only at Zero-Voltage-Switching mode but also reduces the switching voltage stress of main switch. Simulation results have demonstrated the feasibility of the proposed high frequency resonant inverter. Characteristics values based on characteristics estimation through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in the fields of induction heating applications, fluorescent lamp and DC-DC converter etc.

Comparison of Active-Clamp and ZVT Techniques Applied to Tapped-Inductor DC-DC Converter with Low Voltage and Bigh Current

  • Abe, Seiya;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.199-205
    • /
    • 2002
  • This paper compares three kinds of soft-switching circuits from viewpoints of surge suppression, load characteristic, and power efficiency for a tapped-inductor buck converter with low voltage and high current. As a result, these soft-switching techniques have achieved much higher efficiency of 80 % when compared with a hard-switching buck converter for the output condition of 1V and 20A.

Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter (능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석)

  • Kim Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.610-614
    • /
    • 2004
  • Recently, an active-clamp, full-bridge boost converter has been actively studied for high-power applications such as power factor correction and battery discharger. However, DC and AC modeling for this converter has not conquered. In this paper, a DC and small-signal AC modeling for the active-clamp, full-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a do counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM (Continuous conduction mode) boost and DCM (Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

  • PDF

The Transformer Characteristics of the Active Clamp Forward Converter for Notebook Computer Adapter (노트북 컴퓨터 어탭터용 능동 클램프 포워드 컨버터 변압기 특성)

  • Yoon, Kyoung-Hyun;Kim, Chang-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.13-14
    • /
    • 2010
  • The active clamp forward converter provides zero voltage switching and low voltage stress in wide input voltage range. It has a high efficiency at a high switching frequency and the clamped energy is recovered to the input stage. It is available for the power adaptor circuit of notebook computer. The adaptor with 19.5V/200W output power is designed for notebook computer. Specially, it is considered the transformer properties of the converter in design process. The organized process is checked by the validity from the test of the active clamp forward converter.

  • PDF

A New Zero-Voltage-Switching Bridgeless PFC, Using an Active Clamp

  • Ramezani, Mehdi;Ghasedian, Ehsan;Madani, Seyed M.
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.723-730
    • /
    • 2012
  • This paper presents a new ZVS single phase bridgeless (Power Factor Correction) PFC, using an active clamp to achieve zero-voltage-switching for all main switches and diodes. Since the presented PFC uses a bridgeless rectifier, most of the time, only two semiconductor components are in the main current path, instead of three in conventional single-switch configurations. This property significantly reduces the conduction losses,. Moreover, zero voltage switching removes switching loss of all main switches and diodes. Also, auxiliary switch turns on zero current condition. The presented converter needs just a simple non-isolated gate drive circuitry to drive all switches. The eight stages of each switching period and the design considerations and a control strategy are explained. Finally, the converter operation is verified by simulation and experimental results.