• Title/Summary/Keyword: Power Cable

Search Result 1,551, Processing Time 0.031 seconds

Analysis on Current Distribution of Four-Layer HTSC Power Transmission Cable with a Shield Layer

  • Lim Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.308-312
    • /
    • 2006
  • The inductance difference between conducting layers of high-Tc superconducting (HTSC) power transmission cable causes the current sharing of each conducting layer to be unequal, which decreases the current transmission capacity of HTSC power cable. Therefore, the design for even current sharing in HTSC power transmission cable is required. In this paper, we investigated the current distribution of HTSC power cable with a shield layer dependent on the pitch length and the winding direction of each layer. To analyze the effect of the shield layer on the current sharing of the conducting layers of HTSC power cable, the current distribution of HTSC power cable without a shield layer was compared with the case of HTSC power cable with a shield layer. It could be found through the analysis from the computer simulations that the shield layer of HTSC power cable could be contributed to the improvement of current distribution of conducting layers at the specific pitch length and the winding direction of conducting layer. The result and discussion for the current distribution calculated for HTSC power transmission cable with a shield layer were presented and compared with the cable without a shield layer.

Investigation on the inductive and resistive fault current limiting HTS power cable

  • Lee, Sangyoon;Choi, Jongho;Kim, Dongmin;Kwon, Yonghyun;Kim, Seokho;Sim, Kideok;Cho, Jeonwook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.59-63
    • /
    • 2014
  • HTS power cable bypass the fault current through the former to protect superconducting tapes. On the other hand, the fault current limiting (FCL) power cable can be considered to mitigate the fault current using its increased inductance and resistance. Using the increased resistance of the cable is similar to the conventional resistive fault current limiter. In case of HTS power cable, the magnetic field of HTS power cable is mostly shielded by the induced current on the shield layer during normal operation. However, quench occurs at the shield layer and its current is kept below its critical current at the fault condition. Consequently, the magnetic field starts to spread out and it generates additional inductive impedance of the cable. The inductive impedance can be enhanced more by installing materials of high magnetic susceptibility around the HTS power cable. It is a concept of SFCL power cable. In this paper, a sample SFCL power cable is suggested and experimental results are presented to investigate the effect of iron cover on the impedance generation. The tests results are analyzed to verify the generation of the inductive and resistive impedance. The analysis results suggest the possible applications of the SFCL power cable to reduce the fault current in a real grid.

Economic analysis of a 22.9 kV HTS power cable and conventional AC power cable for an offshore wind farm connections

  • Jung, Ga-Eun;Dinh, Minh-Chau;Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.60-64
    • /
    • 2018
  • As the offshore wind farms increase, interest in the efficient power system configuration of submarine cables is increasing. Currently, transmission system of the offshore wind farm uses almost AC system. High temperature superconducting (HTS) power cable of the high capacity has long been considered as an enabling technology for power transmission. The HTS cable is a feasible way to increase the transmission capacity of electric power and to provide a substantial reduction in transmission losses and a resultant effect of low CO2 emission. The HTS cable reduces its size and laying sectional area in comparison with a conventional XLPE or OF cable. This is an advantage to reduce its construction cost. In this paper, we discuss the economic feasibility of the 22.9 kV HTS power cable and the conventional AC power cables for an offshore wind farm connections. The 22.9 kV HTS power cable cost for the offshore wind farm connections was calculated based on the capital expenditure and operating expense. The economic feasibility of the HTS power cable and the AC power cables were compared for the offshore wind farm connections. In the case of the offshore wind farm with a capacity of 100 MW and a distance of 3 km to the coast, cost of the 22.9 kV HTS power cable for the offshore wind farm connections was higher than 22.9 kV AC power cable and lower than 70 kV AC power transmission cable.

High frequency partial discharge measurement by metal foil electrode (박전극을 이용한 고주파 부분방전 측정 연구)

  • Kim, C.S.;Shin, D.S.;Lee, C.Y.;Kim, J.N.;Baek, J.H.;Kim, D.W.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1081-1083
    • /
    • 1999
  • The capacitive coupling technique has been used as conventional method for PD detection on the power cable line. Recently, however PD measurement using by high frequency is known to have an excellent sensitivity comparison with low frequency on-site. In this paper, the high frequency characteristic of two type of metal foil sensor was studied and the technique was proved to be more effective diagnostic method than conventional method for qualification of EHV cable and accessories.

  • PDF

Design of Fault Location System for High Voltage Underground Power Cable (지중송전선 고장점 탐색 장치 설계)

  • Lee, Jae-Duck;Ryoo, Hee-Suk;Choi, Sang-Bong;Nam, Kee-Young;Jeong, Seong-Hwan;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.603-605
    • /
    • 2006
  • To reduce inference of any power delivery failures in underground power cable, power system operators are trying to find effective way of finding fault location as soon as possible. But it is very difficult to find fault location exactly for underground power cable. We are developing fault location system for underground power cable which can detect its fault location exactly. This new system monitors current and voltage of underground power cable by using low voltage and current sensors and if there are any accidents, it records its transient signal. Fault location is calculated by analyzing recorded signal. To develop fault location system for power cable, we needed fault simulation system and we installed it physically and tested. In this rapers, we describe on describe of fault location system for underground power cable.

  • PDF

Insulation Test for the 22.9 kV Class HTS Power Transmission Cable

  • J.W. Cho;Kim, H.J.;K.C. Seong;H.M. Jang;Kim, D.W.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.48-51
    • /
    • 2003
  • HTS power transmission cable is expected to transport large electric power with a compact size. We are developing a 3-core, 22.9 kV, 50 MVA class HTS power cable, and each core consists of a conductor and shield wound with Bi-2223 tapes, electrical insulation with laminated polypropylene paper (LPP) impregnated with liquid nitrogen. This paper describes the design and experimental results of the model cable for the 22.9 kV, 50 MVA class HTS power transmission cable. The model cable was used the SUS tapes instead of HTS tapes because of testing the electrical characteristics only. The model cable was 1.3 m long and electrical insulation thickness was 4.5 mm. The model cable was evaluated the partial discharge (PD), AC and Impulse withstand voltage in liquid nitrogen. The AC and Impulse withstands voltage and PD inception stress was satisfied with the standard of Korea Electric Power Corporation (KEPCO) in the test results. The 3-core 22.9 kV, 50 MVA class HTS power cable has been designed and manufactured based on these experimental results.

A Study on the Introduction of Superconducting Cable in Korean Power System (초전도 케이블 계통 적용을 위한 계통 구성 방안 및 적용 대상 고찰)

  • 김종율;윤재영;이승렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • Nowadays, As power demand increases gradually, the call for underground transmission system increases. But it is very difficult and high in cost to construct new ducts and/or tunnels for power cables in metropolitan areas. HTS cable has the several useful characteristics such as increased power density, stronger magnetic fields and/or reduced losses. Therefore HTS cable can allow more power to be moved in existing ducts, which means very large economical and environmental benefits. In this paper, we investigate the status of korean power system and underground transmission system. Based on this, the feasibility study on applying HTS cable to korean power system is carried out and then we propose the new power system configuration of metropolitan area with HTS cable. Finally, we can get a conclusion that applying HTS cable to 154kV underground transmission line in metropolitan area such as seoul is very available. In addition, detail applicable cases are investigated; a)replace old conventional cable with HTS cable; b) apply HTS cable to constructing new underground transmission line; c)use HTS cable to resolve overload problem in conventional power system configuration.

RTDS-based Model Component Development of a Tri-axial HTS Power Cable and Transient Characteristic Analysis

  • Ha, Sun-Kyoung;Kim, Sung-Kyu;Kim, Jin-Geun;Park, Minwon;Yu, In-Keun;Lee, Sangjin;Kim, Jae-Ho;Sim, Kideok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2083-2088
    • /
    • 2015
  • The transient characteristics of the tri-axial High Temperature Superconducting (HTS) power cable are different from those of a conventional power cable depending on whether the cable is under a steady or transient state due to the quench. Verification using simulation tools is required to confirm both the characteristics of the cable and the effect of the cable when it is applied to a real utility. However, a component for the cable has not been provided in simulation tools; thus the RTDS-based model component of the tri-axial HTS power cable was developed, and a simulation was performed under the transient state. The considered properties of model component include resistance, reactance and temperature. Simulation results indicate the variation of HTS power cable condition. The results are used for the transient characteristic analysis and stability verification of the tri-axial HTS power cable. In the future, the RTDS-based model component of the cable will be used to implement the hardware-in-the-loop simulation with a protection device.

The mechanical characteristics of 345kV XLPE cable (345kV XLPE 2000$mm^2$ 케이블의 기계적특성 고찰)

  • Nam, S.H.;Baek, J.H.;Heo, H.D.;Lee, S.H.;Kim, C.M.;Lee, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1688-1690
    • /
    • 2001
  • The mechanical characteristics of XLPE cable is basic to the installation design. Especially, snake and offset design require accurate coefficient of linear expansion($\alpha$), Young's modulus(E) and bending stiffness(El) of the cable. In this paper, $\alpha$, E and El of 345kV XLPE cable was measured by experimental setup, and verified by measuring axial tension and lateral displacement in snake installation.

  • PDF

A Study on the development of optical fiber incorporated high-voltage underground power cable (광복합 고압지중전력케이블의 개발에 관한 연구)

  • Ryu, Jae-Kyu;Yoo, Sung-Jong;Jeon, Seung-Ik;Choi, Bong-Nam;Lee, Young-Ik
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1828-1830
    • /
    • 1996
  • In this study, We developed the optical fiber incorporated high-voltage underground power cable which is combined optical fibers with conventional high-voltage underground power cable. Optical-Unit that optical fiber is inserted in stainless tube is tested, and we got good results enough to safe optical fibers. Also we put the optical fiber incorporated high-voltage underground power cable to the test of electrical characteristics and optical characteristics, we knew that the electrical characteristics were the same characteristics as conventional high-voltage underground power cable and the transmission loss change was almost zero.

  • PDF