• Title/Summary/Keyword: Power Battery

Search Result 2,710, Processing Time 0.032 seconds

Energy Efficient Routing Protocols based on LEACH in WSN Environment (WSN 환경에서 LEACH 기반 에너지 효율적인 라우팅 프로토콜)

  • Dae-Kyun Cho;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.609-616
    • /
    • 2023
  • In a wireless network environment, since sensors are not always connected to power, the life of a battery, which is an energy source supplied to sensors, is limited. Therefore, various studies have been conducted to extend the network life, and a layer-based routing protocol, LEACH(: Low-energy Adaptive Clustering Hierarchy), has emerged for efficient energy use. However, the LEACH protocol, which transmits fused data directly to the sink node, has a limitation in that it consumes as much energy as the square of the transmission distance when transmitting data. To improve these limitations, this paper proposes an algorithm that can minimize the transmission distance with multi-hop transmission where cluster heads are chained between cluster heads through relative distance calculation from sink nodes in every round.

Analysis of Latency and Computation Cost for AES-based Whitebox Cryptography Technique (AES 기반 화이트박스 암호 기법의 지연 시간과 연산량 분석)

  • Lee, Jin-min;Kim, So-yeon;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.115-117
    • /
    • 2022
  • Whitebox encryption technique is a method of preventing exposure of encryption keys by mixing encryption key information with a software-based encryption algorithm. Whitebox encryption technique is attracting attention as a technology that replaces conventional hardware-based security encryption techniques by making it difficult to infer confidential data and keys by accessing memory with unauthorized reverse engineering analysis. However, in the encryption and decryption process, a large lookup table is used to hide computational results and encryption keys, resulting in a problem of slow encryption and increased memory size. In particular, it is difficult to apply whitebox cryptography to low-cost, low-power, and light-weight Internet of Things products due to limited memory space and battery capacity. In addition, in a network environment that requires real-time service support, the response delay time increases due to the encryption/decryption speed of the whitebox encryption, resulting in deterioration of communication efficiency. Therefore, in this paper, we analyze whether the AES-based whitebox(WBC-AES) proposed by S.Chow can satisfy the speed and memory requirements based on the experimental results.

  • PDF

A Study of the Development Safety Criteria for Hybrid Electrical Propulsion Fishing Boats (전기복합 추진어선의 안전기준 개발에 관한 연구)

  • Cheol eon Kang;Chul ho Baek;Sung hun Kim;Chan jae Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.207-214
    • /
    • 2023
  • Ships emit significant amounts of air pollution. To reduce ship emissions, the government has implemented the Eco-Friendly Ship Act to improve the marine air environment, under which the use of eco-friendly ships that use eco-friendly energy as a power source encouraged and technologies to reduce marine pollution are developed. Therefore, the revision of relevant laws and systems such as inspection and facility standards for the safe operation of eco-friendly ships is urgently needed, especially those for fishing vessels, which account for the majority of domestic coastal vessels. This study defines the core equipment for the application of electric complex propulsion systems to fishing boats and presents a minimum safety standard plan for the adoption and dissemination of eco-friendly fishing boats.

Analyses of Requirement of Security based on Gateway Architecture for Secure Internet (사물인터넷망의 보안 및 프라이버시 문제 해결을 위한 게이트웨이 보안 구조 분석)

  • Kim, Jung Tae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.3
    • /
    • pp.461-470
    • /
    • 2016
  • As IoT is broadly used in many fields, the security of IoT is becoming especially important and critical issues. Security and privacy are the key issues for IoT applications, and still faced with some enormous challenges. Sensor has limited resources such as computing power, memory, battery. By means of deeply analyzing the security architecture and features in security framework. While a number of researchers have explored such security challenges and open problems in IoT, there is an unfortunate lack of a systematic study of the security challenges in the IoT landscape. This special issue features recent and emerging advances IoT architecture, protocols, services and applications. The alternative method is IoT security gateway. In this paper, we surveyed the demands and requirements. By means of deeply analyzing the security architecture and features, we analyzed the demands and requirements for security based on gateway application.

Real-time wireless marine radioactivity monitoring system using a SiPM-based mobile gamma spectroscopy mounted on an unmanned marine vehicle

  • Min Sun Lee;Soo Mee Kim;Mee Jang;Hyemi Cha;Jung-Min Seo;Seungjae Baek;Jong-Myoung Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2158-2165
    • /
    • 2023
  • Marine radioactivity monitoring is critical for taking immediate action in case of unexpected nuclear accidents at nuclear facilities located near coastal areas. Especially when the level of contamination is not predictable, mobile monitoring systems will be useful for wide-area ocean radiation survey and for determination of the level of radioactivity. Here, we used a silicon photomultiplier and a high-efficiency GAGG crystal to fabricate a compact, battery-powered gamma spectroscopy that can be used in an ocean environment. The developed spectroscopy has compact dimensions of 6.5 × 6.5× 8 cm3 and weighs 560 g. We used LoRa, a low-power wireless protocol for communication. Successful data transmission was achieved within 1.4 m water depth. The developed gamma spectroscopy was able to detect radioactivity from a 137Cs point source (3.7 kBq) at a distance of 20 cm in water. Moreover, we demonstrated an unmanned radioactivity monitoring system in a real sea by combining unmanned surface vehicle with the developed gamma spectroscopy. A hidden 137Cs source (3.07 MBq) was detected by the unmanned system at a distance of 3 m. After successfully testing the developed mobile spectroscopy in an ocean environment, we believe that our proposed system will be an effective solution for mobile real-time marine radioactivity monitoring.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi;Su Jin Jun;Jinhong Lee;Myung-Hyun Ryu;Hyeyoung Shin;Kyu-Nam Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.85-95
    • /
    • 2023
  • In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.

Proposal of a Factory Energy Management Method Using Electric Vehicle Batteries (전기자동차 배터리를 활용한 공장의 에너지 관리 방안 제안)

  • Nam-Gi Park;Seok-Ju Lee;Byeong-Soo Go;Minh-Chau Dinh;Jun-Yeop Lee;Minwon Park
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.67-77
    • /
    • 2024
  • Increasing energy efficiency in factories is an activity aimed at optimizing resource allocation in manufacturing processes to establish production plans. However, this strategy may not apply effectively when night shifts are unavoidable. Additionally, continuous fluctuations in production requirements pose challenges for its implementation in the factory. Recently, with the rapid proliferation of electric vehicles (EVs), technology utilizing electric vehicle batteries as energy storage systems has gained attention. Technology using these batteries can be an alternative for factory energy management. In this paper, a factory energy management method using EV batteries is proposed. The proposed method is analyzed using PSCAD/EMTDC software, considering the state of charge of EV batteries and Time-of-Use (TOU) rates. The proposed method was compared with production scheduling established considering predicted power usage and TOU rates. As a result, production scheduling saved 4,152 KRW per day, while the proposed method saved 7,286 KRW in electricity costs. Through this paper, the possibility of utilizing EV batteries for factory energy management has been demonstrated.

A Study on the X-ray Image Reading of Radiological Dispersal Device (방사능 폭발물의 X-ray 영상판독에 관한 연구)

  • Geun-Woo Jeong;Kyong-Jin Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.437-443
    • /
    • 2024
  • The purpose of radiological Dispersal Device(RDD) is to kill people by explosives and to cause radiation exposure by dispersing radioactive materials. And It is a form of explosive that combines radioactive materials such as Co-60 and Ir-192 with improvised explosives. In this study, we tested and evaluated whether it was possible to read the internal structure of an explosive using X-rays in a radioactive explosive situation. The improvised explosive device was manufactured using 2 lb of model TNT explosives, one practice detonator, one 9V battery, and a timer switch in a leather briefcase measuring 41×35×10 cm3. The radioactive material used was the Co-60 source used in the low-level gamma ray irradiation device operated at the Advanced Radiation Research Institute of the Korea Atomic Energy Research Institute. The radiation dose used was gamma ray energy of 1.17 MeV and 1.33 MeV from a Co-60 source of 2208 Ci. The dose rates are divided into 0.5, 1, 2, and 4 Gy/h, and the exposure time was divided into 1, 3, 5, and 10 minutes. Co-60 source was mixed with the manufactured explosive and X-ray image reading was performed. As a result of the experiment, the X-ray image appeared black in all conditions divided by dose rate and time, and it was impossible to confirm the internal structure of the explosive. This is because γ-rays emitted from radioactive explosives have higher energy and stronger penetrating power than X-rays, so it is believed that imaging using X-rays is limited By blackening the film. The results of this study are expected to be used as basic data for research and development of X-ray imaging that can read the internal structure of explosives in radioactive explosive situations.

Exploring Key Topics and Trends of Government-sponsored R&D Projects in Future Automotive Fields: LDA Topic Modeling Approach (미래 자동차 분야 국가연구개발사업의 주요 연구 토픽과 투자 동향 분석: LDA 토픽모델링을 중심으로)

  • Ma Hyoung Ryul;Lee Cheol-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • The domestic automotive industry must consider a strategic shift from traditional automotive component manufacturing to align with future trends such as connectivity, autonomous driving, sharing, and electrification. This research conducted topic modeling on R&D projects in the future automotive sector funded by the Ministry of Trade, Industry, and Energy from 2013 to 2021. We found that topics such as sensors, communication, driver assistance technology, and battery and power technology remained consistently prominent throughout the entire period. Conversely, topics like high-strength lightweight chassis were observed only in the first period, while topics like AI, big data, and hydrogen fuel cells gained increasing importance in the second and third periods. Furthermore, this research analyzed the areas of concentrated investment for each period based on topic-specific government investment amounts and investment growth rates.